eISSN: 2618-6446
Conferences Latest Issue Archive Future Issues About Us Journals

SETSCI - Volume 1 (2017)
ISMSIT2017 - International Symposium on Multidisciplinary Studies and Innovative Technologies, Tokat, Turkey, Dec 02, 2017

Eşikleme Tekniklerinin Renk Uzayı Tabanlı Kümeleme Yönteminin Başarısına Etkisi (ISMSIT2017_23)
Mahmut Kılıçaslan1*, Ufuk Tanyeri2, Mürsel Ozan İncetaş3, Burcu Yakışır Girgin4, Recep Demirci5
1Ankara University, Ankara, Turkey
2Ankara University, Ankara, Turkey
3Bülent Ecevit University, Zonguldak, Turkey
4Ankara University, Ankara, Turkey
5Gazi University, Ankara, Turkey
* Corresponding author: m.kilicaslan@ankara.edu.tr
Published Date: 2017-12-08   |   Page (s): 107-110   |    195     5

ABSTRACT Eşikleme yöntemleri kenar belirleme, bölütleme ve kümeleme yaklaşımlarında sıklıkla kullanılmaktadır. Söz konusu teknikler yardımıyla renk kanallarından çeşitli sayıda kümeler elde edilebilir. Ancak, hangi yaklaşımın daha başarılı olduğu konusu belirsizliğini korumaktadır. Bu çalışmada, çok sık tercih edilen Histogramın Ağırlık Merkezi (HAM), OTSU ve KAPUR eşikleme algoritmaları kullanılarak yapılan renk uzayı tabanlı kümeleme sonuçları, 100 görüntüden oluşan Weizmann tek nesneli bölütleme veritabanı yardımıyla test edilmiş ve farklı eşikleme yöntemi ile elde edilen renk kümelerine ait bölütleme sonuçları F-Skor olarak kaydedilmiştir. Böylece, kümeleme işlemi için sıklıkla kullanılan eşikleme yöntemlerinin başarısı nicemsel olarak belirlenmiş ve birbirleriyle karşılaştırılmıştır.  
KEYWORDS Eşikleme, Renk Uzayı, Kümeleme
REFERENCES [1] L. G. Shapiro and G. C. Stockman, Computer Vision, New Jersey, Prentice-Hall, ISBN 0-13-030796-3, pp. 279-325, 2001.

[2] R. Demirci, “Fuzzy adaptive anisotropic filter for medical images”, Expert Systems, Vol. 27(3), pp. 219–229, 2010.

[3] N. Otsu, “A threshold selection method from gray-level histograms”, IEEE Trans. Sys., Man., Cyber, Vol. 9(1), pp. 62-66, 1979.

[4] J. N. Kapur, P. K. Sahoo, and A. K. C. Wong, “A new method for graylevel picture thresholding using the entropy of the histogram”, Computer Vision, Graphics and Image Processing, Vol. 29(3), pp. 273–285, 1985.

[5] L. Barghout and J. Sheynin, “Real-world scene perception and perceptual organization: Lessons from Computer Vision”, Journal of Vision, Vol. 13(9), pp. 709–709, doi:10.1167/13.9.709, 2013.

[6] H. Mobahi, S. Rao, A. Yang, S. Sastry and Y. Ma, “Segmentation of natural images by texture and boundary compression”, International Journal of Computer Vision, Vol. 95, pp. 86–98, doi:10.1007/s11263- 011-0444-0, 2011.

[7] S. Rao, H. Mobahi, A. Yang, S. Sastry and Y. Ma, “Natural image segmentation with adaptive texture and boundary encoding”, in Asian Conference on Computer Vision (ACCV) 2009, H. Zha, R.-i. Taniguchi, and S. Maybank (Eds.), Part I, LNCS 5994, pp. 135--146, 2009.

[8] R. Ohlander, K. Price, D. R. Reddy, “Picture segmentation using a recursive region splitting method”, Computer Graphics and Image Processing, Vol. 8(3), pp. 313–333. doi:10.1016/0146-664X(78)90060-6, 1978.

[9] S. Osher and N. Paragios, Geometric Level Set Methods in Imaging, Vision, and Graphics, Springer-Verlag New York, pp. 59-77, 2003.

[10] T. Lindeberg and M. Li, “Segmentation and classification of edges using minimum description length approximation and complementary junction cues”, Department of Numerical Analysis and Computer Science, KTH (Royal Institute of Technology), SE-100 44 Stockholm, Sweden, Tech. Rep., pp. 1-19, Jan 1996.

[11] S. Guberman, V. V. Maximov, A. Pashintsev, “Gestalt and image understanding”, Gestalt Theory, Vol. 34(2), pp. 143-166, 2012.

[12] R. Nock and F. Nielsen, “Statistical region merging”, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 26(11), pp. 1452-1458, 2004.

[13] L. Chen, H. D. Cheng and J. Zhang, “Fuzzy subfiber and its application to seismic lithology classification”, Information Sciences: Applications, Vol. 1(2), pp. 77-95, 1994.

[14] S. L. Horowitz and T. Pavlidis, “Picture segmentation by a directed split and merge procedure”, in Proc. ICPR, Denmark, pp.424-433, 1974.

[15] S. L. Horowitz and T. Pavlidis, “Picture segmentation by a tree traversal algorithm”, Journal of the ACM, Vol. 23(2), pp. 368-388, 1976.

[16] L. Chen, “The lambda-connected segmentation and the optimal algorithm for split-and-merge segmentation”, Chinese J. Computers, Vol. 14(5), pp 321-331, 1991.

[17] V. Caselles, R. Kimmel and G. Sapiro, “Geodesic active contours”, International Journal of Computer Vision. Vol. 22(1), pp. 61–79, 1997.

[18] S. Osher and N. Paragios. Geometric Level Set Methods in Imaging Vision and Graphics, Springer Verlag, ISBN 0-387-95488-0, 2003.

[19] (2017) J. A. Sethian, “Segmentation in Medical Imaging”, [Online]. Available: https://math.berkeley.edu/~sethian/2006/Applications/Medical_Imagi
ng/artery.html.

[20] N. Forcade, G. Le Guyader and C. Gout, “Generalized fast marching method: applications to image segmentation”, Numerical Algorithms, Vol. 48(1–3), pp. 189–211, doi:10.1007/s11075-008-9183-x, July 2008.

[21] J. Shi and J. Malik, “Normalized cuts and image segmentation”, IEEE Transactions on pattern analysis and machine intelligence, Vol. 22(8), pp. 888-905, 2000.

[22] L. Grady, “Random walks for image segmentation”, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 28(11), pp. 1768– 1783, 2006.

[23] Z. Wu and R. Leahy, “An optimal graph theoretic approach to data clustering: Theory and its application to image segmentation”, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 15(11), pp. 1101–1113, 1993.

[24] L. Grady and E. L. Schwartz, “Isoperimetric graph partitioning for image segmentation", IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 28(3), pp. 469–475, 2006.

[25] C. T. Zahn, “Graph-theoretical methods for detecting and describing gestalt clusters”, IEEE Transactions on Computers, Vol. 20(1), pp. 68– 86, 1971.

[26] A. Witkin, “Scale-space filtering”, in Proc. 8th Int. Joint Conf. Art. Intell., Karlsruhe, Germany, pp. 1019–1022, 1983.

[27] A. Witkin, “Scale-space filtering: a new approach to multi-scale description”, in Proc. IEEE Int. Conf. Acoust., Speech, Signal Processing (ICASSP), Vol. 9, pp. 150–153, Mar. 1984.

[28] J. Koenderink, “The structure of images”, Biological Cybernetics, Vol. 50, pp. 363–370, 1984.

[29] L. Lifshitz and S. Pizer, “A multiresolution hierarchical approach to image segmentation based on intensity extrema”, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 12(6), pp. 529–540,1990.

[30] T. Lindeberg, “Detecting salient blob-like image structures and their scales with a scale-space primal sketch: A method for focus-ofattention”, International Journal of Computer Vision, Vol. 11(3), pp. 283–318, 1993.

[31] T. Lindeberg, Scale-space theory in computer vision, Kluwer Academic Publishers, ISBN 0-7923-9418-6, 1994.

[32] J. Gauch and S. Pizer, “Multiresolution analysis of ridges and valleys in grey-scale images”, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 15(6), pp. 635–646, 1993.

[33] O. Olsen and M. Nielsen, “Multi-scale gradient magnitude watershed segmentation”, in Proc. of ICIAP 97, Florence, Italy, Lecture Notes in Computer Science, pp. 6–13, September 1997.

[34] E. Dam, P. Johansen, O. Olsen, A. Thomsen, T. Darvann, A. Dobrzenieck, N. Hermann, N. Kitai, S. Kreiborg, P. Larsen and M. Nielsen, “Interactive multi-scale segmentation in clinical use”, in European Congress of Radiology, 2000.

[35] K. Vincken, A. Koster and M. Viergever, “Probabilistic multiscale image segmentation”, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 19(2), pp. 109–120, 1997.

[36] M. Tabb and N. Ahuja, “Unsupervised multiscale image segmentation by integrated edge and region detection”, IEEE Transactions on Image Processing, Vol. 6(5), pp. 642–655, 1997.

[37] E. Akbas and N. Ahuja, “From ramp discontinuities to segmentation tree”, In Asian Conference on Computer Vision, pp. 123-134, September 2009.

[38] C. Undeman and T. Lindeberg, “Fully automatic segmentation of MRI brain images using probabilistic anisotropic diffusion and multi-scale watersheds”, in Proc. Scale-Space'03, Isle of Skye, Scotland, Springer Lecture Notes in Computer Science, Vol. 2695, pp. 641-656, 2003.

[39] L. Florack and A. Kuijper, “he topological structure of scale-space images”, Journal of Mathematical Imaging and Vision, Vol. 12(1), pp. 65–79, 2000.

[40] L. Barghout, “Visual taxometric approach to image segmentation using fuzzy-spatial taxon cut yields contextually relevant regions”, In International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems, pp. 163-173, July 2014.

[41] L. Barghout, “Vision: how global perceptual context changes local contrast processing”, Ph.D. Dissertation, 2003.

[42] Z. M. Saygin, D. E. Osher, J. Augustinack, B. Fischl and J. D. E. Gabrieli, “Connectivity-based segmentation of human amygdala nuclei using probabilistic tractography”, Neuroimage, Vol. 56(3), pp. 1353–61, 2011.

[43] R. A. Menke, S. Jbabdi, K. L. Miller, P. M. Matthews and M. Zarei, “Connectivity-based segmentation of the substantia nigra in human and its implications in Parkinson's disease”, Neuroimage, Vol. 52(4), pp. 1175–80, 2010.

[44] R. Demirci, U. Güvenç and H. T. Kahraman, “Görüntülerin renk uzayı yardımıyla ayrıştırılması”, İleri Teknoloji Bilimleri Dergisi, Vol. 3(1), pp. 1-8, 2014.

[45] X. Y. Wang, Z. F. Wu, L. Chen, H. L. Zheng and H. Y. Yang, “Pixel classification based color image segmentation using quaternion exponent moments”, Neural Networks, Vol. 74, pp. 1-13, 2016.

[46] H. D. Cheng, X. H. Jiang, Y. Sun and J. Wang, “Color image segmentation: advances and prospects”, Pattern recognition, Vol. 34(12), pp. 2259-2281, 2001.

[47] U. Güvenç, Ç. Elmas and R. Demirci, “Renkli görüntülerin otomatik ayrıştırılması”, Politeknik Dergisi, Vol. 11(1), pp. 9-12, 2008.

[48] S. Alpert, M. Galun, R. Basri and A. Brandt, “Image segmentation by probabilistic bottom-up aggregation and cue integration”, IEEE transactions on pattern analysis and machine intelligence, Vol. 34(2), pp. 315-327, 2012.

SET Technology - Turkey

eISSN  : 2618-6446

E-mail : info@set-science.com
+90 533 2245325

Tokat Technology Development Zone Gaziosmanpaşa University Taşlıçiftlik Campus, 60240 TOKAT-TURKEY
©2018 SET Technology