eISSN: 2618-6446
Latest Issue Archive Future Issues About Us JOURNALS

SETSCI - Volume 3 (2018)
ISAS2018-Winter - 2nd International Symposium on Innovative Approaches in Scientific Studies, Samsun, Turkey, Nov 30, 2018

Mathematical Modelling for Environmental Stochasticity on Oxygen-Plankton System (ISAS2018-Winter_169)
Yadigar Şekerci Fırat1*
1Amasya University, Amasya, Turkey
* Corresponding author: yadigar.firat@amasya.edu.tr
Published Date: 2019-01-14   |   Page (s): 893-895   |    37     6

ABSTRACT In this talk, we investigate a model of the oxygen-phytoplankton-zooplankton dynamics to understand the underlying
properties of the effect of environmental stochasticity both on oxygen production rate and phytoplankton growth rate. We address
this issue theoretically by means of a coupled oxygen-plankton dynamics where some parameters are affected from
environmental stochasticity. Obtained results show that small noise on oxygen production rate results in less likely depletion of
oxygen in a water body and it appears that the probability of oxygen depletion decreases with increasing value of temperature.  
KEYWORDS Oxygen-plankton system; stochasticity; mathematical modelling; spatial distribution; dynamical system.
REFERENCES [1] Abundo, M. (1991). A stochastic model for predator-prey systems: basic properties, stability and computer simulation. Journal of Mathematical Biology, 29(6):495-511.
[2] Den Boer, P. J. (1968). Spreading of risk and stabilization of animal numbers. Acta Biotheoretica, 18(1):165-194.
[3] Capocelli, R. M., and Ricciardi, L. M. (1974). A diffusion model for population growth in random environment. Theoretical Population Biology, 5(1):28-41.
[4] Crutchfield, J. P., Farmer, J. D., and Huberman, B. A. (1982). Fluctuations and simple chaotic dynamics. Physics Reports, 92(2):45- 82.
[5] Goel, N. S., and Richter-Dyn, N. (2016). Stochastic models in biology. Elsevier.
[6] Haken, H. (1978). Synergetics. Springer-Verlag, Berlin.
[7] Haken, H. (1983). Advanced Synergetics. Springer-Verlag, Berlin.
[8] Horsthemke, W., and Lefever, R. (1984). Noise-induced transitions in physics, chemistry, and biology. Springer-Verlag, Berlin.
[9] Lewontin, R. C., and Cohen, D. (1969). On population growth in a randomly varying environment. Proceedings of the National Academy of Sciences 62(4):1056-1060.
[10] Petrovskii, S., Morozov, A., Malchow, H., and Sieber, M. (2010). Noise can prevent onset of chaos in spatiotemporal population dynamics. The European Physical Journal B. 78(2):253-264.
[11] Satake, A., Kubo, T., and Iwasa, Y. (1998). Noise-induced Regularity of Spatial Wave Patterns in SubalpineAbiesForests. Journal of Theoretical Biology, 195(4):465-479.
[12] Sekerci, Y. and Petrovskii, S. (2015a). Mathematical modelling of spatiotemporal dynamics of oxygen in a plankton system. Mathematical Modelling of Natural Phenomena, 10(2):96-114.
[13] Sekerci, Y. and Petrovskii, S. (2015b). Mathematical modelling of plankton-oxygen dynamics under the climate change. Bulletin of Mathematical Biology, 77(12):2325-2353.

SET Technology - Turkey

eISSN  : 2618-6446

E-mail : info@set-science.com
+90 533 2245325

Tokat Technology Development Zone Gaziosmanpaşa University Taşlıçiftlik Campus, 60240 TOKAT-TURKEY
©2018 SET Technology