eISSN: 2618-6446
Conferences Latest Issue Archive Future Issues About Us JOURNALS

SETSCI - Volume 3 (2018)
ISAS2018-Winter - 2nd International Symposium on Innovative Approaches in Scientific Studies, Samsun, Turkey, Nov 30, 2018

An Extensive Review on Nanofluids - Based on Available Experimental Studies (ISAS2018-Winter_7)
Mahmut Kaplan1*, Melda Özdinç Çarpınlıoğlu 2
1Amasya University  , Amasya, Turkey
2Gaziantep University, Gaziantep, Turkey
* Corresponding author: mahmut.kaplan@amasya.edu.tr
Published Date: 2019-01-14   |   Page (s): 43-55   |    13     6

ABSTRACT In recent years, nanofluids, the dispersion of nanoparticles with sizes less than 100 nm in base fluids, have been
attracted the interest of many researchers due to their capability of enhancing thermophysical properties. In this review paper,
experimental studies on nanofluids have been analysed collectively for the period from 1993 to 2018. Preparation techniques
and thermophysical properties of nanofluids were given in tabular form. Despite the fact that there are a lot of review studies,
the aim of this work is to give all of the studies about nanofluids on a common objective basis to facilitate future research in
this area.  
KEYWORDS Nanofluids, preparation, characterization, stability, thermophysical properties
REFERENCES [1] S. Choi. Enhancing thermal conductivity of fluids with nanoparticles. FED 231, 99–103, 1995.
[2] H. Masuda, A. Ebata, K. Teramae and N. Hishinuma. Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles (Dispersion of y-A12O3, SiO2, and TiO2 ultra-fine particles). Netsu Bussei (in Japanese) 4, 227–233, 1993.
[3] X. Wang, X. Xu and S. U. S Choi. Thermal conductivity of nanoparticles–fluid mixture. J Thermophys Heat Transf , 13(4):474– 80, 1999.
[4] N. Putra, W. Roetzel and S. K. Das, Heat Mass Transfer 39, 775 2003.
[5] D. S. Wen and Y. L. Ding. Experimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions. Int. J. Heat Mass Transfer, 47, 5181-5188 2004.
[6] S. M. S. Murshed, K. C. Leong and C. Yang. Enhanced thermal conductivity of TiO2-water based nanofluids. Int J Therm Sci, 44(4):367–373, 2005.
[7] Y. Ding, H. Alias, D. Wen and R. A. Williams. Heat transfer of aqueous suspensions of carbon nanotubes (CNT nanofluids). Int J Heat Mass Transf,49:240–250,2006.
[8] Y. J. Hwang, Y. C. Ahn, H. S. Shin, C. G. Lee, G. T. Kim, H. S. Park and J. K. Lee, Investigation on characteristics of thermal conductivity enhancement of nanofluids, Curr. Appl. Phys., 6, 1068–1071, 2006.
[9] Y. He, Y. Jin, H. Chen, Y. Ding, D. Cang and H. Lu, Heat transfer and flow behavior of aqueous suspensions of TiO2 nanoparticles (nanofluids) flowing upward through a vertical pipe, International Journal of Heat and Mass Transfer, 50, 2272–2281, 2007.
[10] Y. Hwang , J. K. Lee, C. H. Lee, Y. M. Jung, S. I. Cheonga, C. G. Lee, B. C. Ku and S. P. Jang. Stability and thermal conductivity characteristics of nanofluids. Thermochim Acta, 455, 70-74, 2007.
[11] X. Zhang, H. Gu and M. Fujii, Effective thermal conductivity and thermal diffusivity of nanofluids containing spherical and cylindrical nanoparticles, Experimental Thermal and Fluid Science, 31, 593–599, 2007.
[12] X. F. Li, D. S. Zhu, X. J. Wang, N. Wang, J. W. Gao and H. Li. Thermal conductivity enhancement dependent pH and chemical surfactant for Cu- H2O nanofluids. Thermochim Acta, 469(1):98–103, 2008.
[13] S. M. S. Murshed, K. .C Leong and C. Yang. Investigations of thermal conductivity and viscosity of nanofluids. International Journal of Thermal Sciences, 47 (5), 560–568, 2008.
[14] C. T. Nguyen, F. Desgranges, N. Galanis, G. Roy, T. Maré, S. Boucher and H. A. Mintsa. Viscosity data for Al2O3–water nanofluid—hysteresis: is heat transfer enhancement using nanofluids reliable?. Int J Therm Sci, 47(2):103–111, 2008.
[15] W. Duangthongsuk and S. Wongwises. Measurement of temperaturedependent thermal conductivity and viscosity of TiO2-water nanofluids. Exp Therm Fluid Sci, 33(4):706–714, 2009.
[16] H.A. Mintsa, G. Roy, C. T. Nguyen and D. Doucetet. New temperature dependent thermal conductivity data for water-based nanofluids. Int. J. Therm. Sci., vol. 48, no. 2, pp. 363-371, 2009.
[17] D. Zhu, X. Li, N. Wang, X. Wang, J. Gao and H. Li. Dispersion behaviour and thermal conductivity characteristics of Al2O3–H2O nanofluids. Curr Appl Phys, 9(1):131–9, 2009.
[18] M. P. Beck, Y. Yuan, P. Warrier and A. S. Teja. The thermal conductivity of alumina nanofluids in water, ethylene glycol, and ethylene glycol + water mixtures. J Nanopart Res, 12:1469–1477, 2010.
[19] M. Chandrasekar, S. Suresh and A. C. Bose. Experimental investigations and theoretical determination of thermal conductivity and viscosity of Al2O3/water nanofluid. Exp Therm Fluid Sci, 34(2):210–216, 2010.
[20] L. Godson B. Raja, D. M. Lal and S. Wongwises. Experimental investigation on the thermal conductivity and viscosity of silverdeionized water nanofluid. Exp Heat Transf, 23(4):317–32, 2010.
[21] T. P. Teng, Y. H. Hung, T. C. Teng, H. E. Mo and H. G. Hsu. The effect of alumina/water nanofluid particle size on thermal conductivity. Appl Therm Eng, 30(14):2213–2218, 2010.
[22] M. Yeganeh, N. Shahtahmasebi, A. Kompany, E. K. Goharshadi A. Youssefi and L. Šiller. Volume fraction and temperature variations of the effective thermal conductivity of nanodiamond fluids in deionized water. Int J Heat Mass Transf, 53(15):3186–3192, 2010.
[23] K. S. K. Gandhi, M. Velayutham and S. K. Das. Thirumalachari S. Measurement of thermal and electrical conductivities of graphene nanofluids. In: Proceedings of the 3rd Micro and Nano Flows Conference, Thessaloniki, Greece, 22–24, August 2011.
[24] S. Suresh, K. P. Venkitaraj, P. Selvakumar and M. Chandrasekar. Synthesis of Al2O3-Cu/water hybrid nanofluids using two step method and its thermo physical properties. Colloids Surf A: Physicochem Eng Asp, 388(1):41–8, 2011.
[25] B. Aladag, S. Halelfadl, N. Doner, T. Maré, S. Duret and P. Estellé. Experimental investigations of the viscosity of nanofluids at low temperatures. Appl Energy, 97:876–80, 2012.
[26] Y. H. Hung and W. C. Chou. Chitosan for suspension performance and viscosity of MWCNTs. International Journal of Chemical Engineering and Applications, 3(5), 343–346, 2012.
[27] K. S. Suganthi and K. S. Rajan. Temperature induced changes in ZnO – water nanofluid: zeta potential, size distribution and viscosity profiles. Int J Heat Mass Transf, 55(25):7969–80, 2012.
[28] T. Yiamsawasd, A.S. Dalkilic and S. Wongwises. Measurement of the thermal conductivity of titania and alumina nanofluids. Therm. Acta, 545, 48–56, (2012).
[29] S. Halelfadl, P. Estellé, B. Aladag N. Doner and T. Maré. Viscosity of carbon nanotubes water-based nanofluids: influence of concentration and temperature. Int J Therm Sci, 71:111–117, 2013.
[30] J. B. Mena, A. A. Ubices de Moraes, Y. R. Benito, G. Ribatski and J. A. R. Parise Extrapolation of Al2O3-water nanofluid viscosity for temperatures and volume concentrations beyond the range of validity of existing correlations. Appl Therm Eng, 51(1):1092–1097, 2013.
[31] M. C. S. Reddy and V. V. Rao. Experimental studies on thermal conductivity of blends of ethylene glycol-water-based TiO2 nanofluids. Int Commun Heat Mass Transf, 46:31–36, 2013.
[32] L. S. Sundar, M. K. Singh and A. C. M. Sousa. Investigation of thermal conductivity and viscosity of Fe3O4 nanofluid for heat transfer applications. Int Commun Heat Mass Transf, 44:7–14, 2013.
[33] M. H. Esfe, S. Saedodin and M. Mahmoodi. Experimental studies on the convective heat transfer performance and thermophysical properties of MgO–water nanofluid under turbulent flow. Exp Therm Fluid Sci, 52:68–78, 2014.
[34] M. Ghanbarpour, E. B. Haghigi and R. Khodabandeh. Thermal properties and rheological behaviour of water based Al2O3 nanofluid as a heat transfer fluid. Experimental Therm. Fluid Sci., 53, 227-235, 2014.
[35] Z. Hajjar, A. M. Rashidi and A. Ghozatloo. Enhanced thermal conductivities of graphene oxide nanofluids. Int Commun Heat Mass Transf, 57:128–131, 2014.
[36] Z. Said, R. Saidur, A. Hepbasli and N. A. Rahim. New thermophysical properties of water based TiO2 nanofluid—the hysteresis phenomenon revisited. Int Commun Heat Mass Transf, 58:85–95, 2014.
[37] M. H. Esfe, S. Saedodin, S. Wongwises and D. Toghraie. An experimental study on the effect of diameter on thermal conductivity and dynamic viscosity of Fe/water nanofluids. Journal of Thermal Analysis and Calorimetry, 119(3), 1817–1824, 2015.
[38] M. Afrand, D. Toghraie and N. Experimental study on thermal conductivity of water-based Fe3O4 nanofluid: development of a new correlation and modeled by artificial neural network. Int Commun Heat Mass Transf, 75:262–269, 2016.
[39] L. Megatif, A. Ghozatloo, A. Arimi and M. Shariati-Niasar Investigation of laminar convective heat transfer of a novel TiO2– carbon nanotube hybrid water-based nanofluid. Exp Heat Transf, 29(1):124–38, 2016.
[40] Z. Said. Thermophysical and optical properties of SWCNTs nanofluids. International Communications in Heat and Mass Transfer, 78, 207–213, 2016.
[41] L. S. Sundar, M. J. Hortiguela, M. K. Singh, A. C. M. Sousa. Thermal conductivity and viscosity of water based nanodiamond (ND) nanofluids: an experimental study. Int Commun Heat Mass Transf, 76, 245–255, 2016.
[42] G. Huminic, A. Huminic, C. Fleaca, F. Dumitracheb and I. Morjan. Thermo-physical properties of water based SiC nanofluids for heat transfer applications. International Communications in Heat and Mass Transfer, 84, 94-101, 2017.
[43] N. Bouguerra, S. Poncet and S. Elkoun. Dispersion regimes in alumina/water-based nanofluids: Simultaneous measurements of thermal conductivity and dynamic viscosity. International Communications in Heat and Mass Transfer, 92, 51-55, 2018.
[44] Y. Gao, H. Wang, A. P. Sasmito and A. S. Mujumdar. Measurement and modeling of thermal conductivity of grapheme nanoplatelet water and ethylene glycol base nanofluids. International Journal of Heat and Mass Transfer, 123, 97-109, 2018.
[45] M. M. Heyhat and A. Irannezhad. Experimental investigation on the competition between enhancement of electrical and thermal conductivities in water-based nanofluids. Journal of Molecular Liquids, 268, 169-175, 2018.
[46] M. S. Liu, M. C. C. Lin, I. T. Huang and C. C. Wang. Enhancement of thermal conductivity with carbon nanotube for nanofluids. Int Commun Heat Mass Transf; 32(9):1202–1210, 2005.
[47] M. Chopkar, P. K. Das and I. Manna. Synthesis and characterization of nanofluid for advanced heat transfer applications. Scripta Materialia, 55(6):549–552, 2006.
[48] H. Chen, Y. Ding, Y. He and C. Tan. Rheological behavior of ethylene glycol based titania nanofluids. Chem. Phys. Lett., 444, 333- 337, 2007.
[49] W. Yu, H. Xie, L. Chen and Y. Li. Investigation of thermal conductivity and viscosity of ethylene glycol based ZnO nanofluid. Thermochim Acta,491(1):92–96, 2009.
[50] M. Moosavi, E. K. Goharshadi, A. Youssefi. Fabrication, characterization and measurement of some physicochemical properties of ZnO nanofluids. Int J Heat Fluid Flow, 31: 599–605, 2010.
[51] G. Paul, J. Philip, B. Raj, P. K. Das and I. Manna. Synthesis, characterization, and thermal property measurement of nano-Al95Zn05 dispersed nanofluid prepared by a twostep process. Int J Heat Mass Transf 54(15):3783–3788, 2011.
[52] W. Yu, H. Xie, X. Wang and X. Wang. Significant thermal conductivity enhancement for nanofluids containing graphene nanosheets. Phys Lett A; 375(10):1323–1328, 2011.
[53] W. Yu, H. Xie, Y. Li, and L. Chen. Experimental investigation on thermal conductivity and viscosity of aluminum nitride nanofluid. Particuology, 9(2):187–191, 2011a.
[54] M. J. Pastoriza-Gallego, L. Lugo, D. Cabaleiro, J. L. Legido and M. M. Piñeiro. Thermophysical profile of ethylene glycol-based ZnO nanofluids. J. Chem. Thermodynamics, 73:23–30, 2014.
[55] S. Akilu, A. T. Baheta and K.V. Sharma. Experimental measurements of thermal conductivity and viscosity of ethylene glycol-based hybrid nanofluid with TiO2-CuO/C inclusions. Journal of Molecular Liquids, 246, 396-405, 2017.
[56] G. Zyla. Viscosity and thermal conductivity of MgO–EG nanofluids Experimental results and theoretical models predictions. J Therm Anal Calorim, 129:171–180, 2017.
[57] G. Zyla and J. Fal. Viscosity, thermal and electrical conductivity of silicondioxide–ethylene glycol transparent nanofluids: An experimental studies. Thermochimica Acta, 650, 106–113, 2017.
[58] M. A. Ahmadi, M. H. Ahmadi, M. F. Alavi, M. R. Nazemzadegan, R. Ghasempourd and S. Shamshirband. Determination of thermal conductivity ratio of CuO/ethylene glycol nanofluid by connectionist approach. Journal of the Taiwan Institute of Chemical Engineers, 91, 383-395, 2018.
[59] M. Keyvani, M. Afrand, D. Toghraie and M. Reiszadeh. An experimental study on the thermal conductivity of cerium oxide/ethylene glycol nanofluid: developing a new correlation. Journal of Molecular Liquids, 266, 211–217, 2018.
[60] P. K. Namburu, D. P. Kulkarni, D. Misra and D. K. Das. Viscosity of copper oxide nanoparticles dispersed in ethylene glycol and water mixture. Exp Therm Fluid Sci, 32(2):397–402, 2007.
[61] M. Sahooli and S. Sabbaghi. Investigation of thermal properties of CuO nanoparticles on the ethylene glycol–water mixture. Mater Lett, 93:254–257, 2013.
[62] M. M. Elias, I. M. Mahbubul, R. Saidur, M. R. Sohel, I.M. Shahrul, S. S. Khaleduzzaman and S. Sadeghipouret. Experimental investigation on the thermo-physical properties of Al2O3 nanoparticles suspended in car radiator coolant. Int Commun Heat Mass Transf, 54:48–53, 2014.
[63] L. S. Sundar, E. V. Ramana, M. K. Singh and A. C. M. Sousa. Thermal conductivity and viscosity of stabilized ethylene glycol and water mixture Al2O3 nanofluids for heat transfer applications: an experimental study. Int Commun Heat Mass Transf; 56:86–95, 2014.
[64] M. Kole and T. K. Dey. Effect of aggregation on the viscosity of copper oxide–gear oil nanofluids. Int J Therm Sci, 50(9):1741–1747, 2011.
[65] B. Dudda and D. Shin. Effect of nanoparticle dispersion on specific heat capacity of a binary nitrate salt eutectic for concentrated solar power applications. Int. J. Therm. Sci., 69, 37–42, 2013.
[66] M. C. Lu and C. H. Huang. Specific heat capacity of molten salt-based alumina nanofluid. Nanoscale Res. Lett., 8:292, 2013.
[67] M. B. Moghaddam, E. K. Goharshadi, M. H. Entezari and P. Nancarrow. Preparation, characterization, and rheological properties of graphene–glycerol nanofluids. Chem Eng J, 231:365–372, 2013.
[68] M. N. Rashin and J. Hemalatha. Viscosity studies on novel copper oxide–coconut oil nanofluid. Exp Therm Fluid Sci, 48:67–72, 2013.
[69] H. Tiznobaik and D. Shin. Enhanced specific heat capacity of hightemperature molten salt-based nanofluids. Int. J. Heat Mass Transf., 57, 542–548, 2013.
[70] S. Manikandan, A. Shylaja and K. S. Rajan. Thermo-physical properties of engineered dispersions of nano-sand in propylene glycol. Colloids Surf A: Physicochem Eng Asp, 449:8–18, 2014.
[71] L. Sang and T. Liu. The enhanced specific heat capacity of ternary carbonates nanofluids with different nanoparticles. Sol. Energy Mater. Sol. Cells, 169, 297–303, 2017.

SET Technology - Turkey

eISSN  : 2618-6446

E-mail : info@set-science.com
+90 533 2245325

Tokat Technology Development Zone Gaziosmanpaşa University Taşlıçiftlik Campus, 60240 TOKAT-TURKEY
©2018 SET Technology