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Abstract :

Oscillation theory for the solutions of Sturm-Liouville problems is one of the tra-
ditional trends in the qualitative theory of differential equations. Its main goal is to
establish sufficient conditions for the existence of oscillating solutions, to investigate the
laws of distribution of the zeros, the maxima and minima of the solution, to find es-
timates of the distance between the consecutive zeros and of the number of zeros in a
given interval, as well as to obtain the relationship between the oscillatory and other
fundamental properties of the solutions of various classes of differential equations. It is
well-known that Sturm-Liouville type differential equations with classical boundary con-
ditions arise after on application of the method of separation of variables to the varied
assortment of physical problems. Recently such type boundary value problems under ad-
ditional transmission conditions are investigated by many researches. In this paper, we
investigate analogues of the classical Sturm comparison and oscillation theorems for dis-
continuous Sturm-Liouville problem together with transmission conditions. We present
a new criteria for Sturm’s comparison and oscillation theorems, discuss the main tools
used in deriving those criteria.

Keywords : Sturm-liouville Problem, Sturm’s comparison theorem, transmission con-
ditions, oscillation.

1 Introduction

The significant second-order equation y′′+qy = 0 is important a valid subject for research,
although it has a voluminous literature. Sturm-Liouville comparison and oscillation
theory can be applied to establish some qualitative properties of the solutions to some of
the various type differential equations that we cannot solve explicitly.

After Sturm’s familiar work [1] in 1836, Sturmian comparison theorems have been
derived for differential equations of various types. In order to obtain Sturmian comparison
theorems for more general differential equations of second order, Picone [2] established
an valuable identity, known as the Picone identity. In the latter years, Jaro. and Kusano
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[3, 5] derived a new Picone-type identity for half-linear differential equations of second
order and developed Sturmian comparison theory for both forced and unforced half-
linear equations based on this identity [3, 5]. There are many studies dealing with Sturm
comparison and oscillation results for a pair of elliptic type operators. We refer to Kreith
[6, 7], Swanson [8] for Sturmian comparison theorems for linear elliptic equations and
to Allegretto [9], Allegretto and Huang [10, 11], Bognar and Dosly [12],Dunninger [13],
Kusano et al. [14], Yoshida [15, 16, 17] for Picone identities, Sturmian comparison and/or
oscillation theorems for half-linear elliptic differential equations.

In this study we investigated one discontinuous eigenvalue problem which consists of
Sturm-Liouville equation,

(pu′)′(x) + q(x)u(x) = λu(x) (1.1)

to hold on two disjoint intervals [−1, 0) and (0, 1] , where discontinuity in u and u′ at
the interior singular point x = c are prescribed by transmission conditions

u(0−) = u(0+), u′(0+)− u′(0−) = δu(0), (1.2)

together with the boundary conditions

u(−1) = u(1) = 0 (1.3)

where p(x) and p(x) are real valued, p(x) > 0 , the potential q(x) is continuous on
[−1, 0)∪ (0, 1] and has a finite limits q(c∓) = lim

x→0∓
q(x) ; λ is a complex eigenparameter.

Transmission problems appear frequently in various fields of physics and technics. For
example, in electrostatics and magnetostatics the model problem which describes the heat
transfer through an infinitely conductive layer is a transmission problem (see, [18] and the
references listed therein). In recent years, Sturm-Liouville problems with transmission
conditions have been an important research topic in mathematical physics [19, 20, 22,
23, 21, 24, 25, 26]. We give a method for proving the comparison and oscillation theorem
of the discontinuous Sturm-liouville problem (1.1)− (1.3).

Our aim in this paper is to establish comparison and oscillation results for discontin-
uous Sturm-Liouville problems with additional transmission conditions at the point of
discontinuity.

2 Comparison and Oscillation Theorems

We will establish the Sturm comparison theorem for transmission problems in the fol-
lowing form.

Theorem 2.1. Let u = u1(x) be a non-trivial solution of the equation

(pu′)′(x) + q(x)u(x) = λ1u(x), x ∈ [−1, 0) ∪ (0, 1] (2.1)

satisfying transmission conditions at the point of interaction x = 0 given by

u(0−) = u(0+), u′(0+)− u′(0−) = δu(0), p(0−) = p(0+) (2.2)

and u = u2(x) be a non-trivial solution of the equation

(pu′)′(x) + q(x)u(x) = λ2u(x), x ∈ [−1, 0) ∪ (0, 1] (2.3)

satisfying the same transmission conditions (2.2). If λ2 < λ1, then between any two
consecutive zeros of u1(x) there is a zero of u2(x).
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Proof. Let x0, x1 be consecutive zeros of u1(x) with x0 < x1. Suppose,that u2(x) does
not have a zero on (x0, x1). Namely, suppose u1(x1) = u1(x2) = 0 and u2(x) 6= 0 on
(x0, x1). Let us consider equations of the form

Li(u) = (pu′)′ + (q − λi)u = 0, i = 1, 2 x ∈ [−1, 0) ∪ (0, 1] (2.4)

By using the Lagrange’s identity

u2L1u1 − u1L2u2 =
d

dx
{p(x)(u2u

′
1 − u1u

′
2).} (2.5)

and the obvious equality

L1(u2)− L2(u2) = (λ2 − λ1)u2 (2.6)

we have

u2L1u1 − u1[L2u2 + (λ2 − λ1)u2] = (p(x)(u2u
′
1 − u1u

′
2))

′. (2.7)

Then integrating on both sides of the equation (2.7) from x0 to x1, we get

[p(x)(u′1u2 − u′2u1)]|x1
x0 =

x1Z

x0

(λ2 − λ1)u1u2dx > 0. (2.8)

However, the left hand side reduces to

p(x1)u
′
1(x1)u2(x1)− p(x0)u2(x0)u

′
1(x0). (2.9)

Therefore we find that

p(x1)u
′
1(x1)u2(x1)− p(x0)u2(x0)u

′
1(x0) = (λ2 − λ1)

x1Z

x0

u1(x)u2(x)dx (2.10)

Case 1. Let (x0, x1) ⊂ [−1, 0).

i)) Let u1(x), u2(x) > 0 on (x0, x1). These conditions ensure that the integral on
the right in (2.10) is positive. On the left, since u1(x) > 0 by assumption, the function
in increasing at the point x0. Thus u′1(x0) ≥ 0. but u1(x) cannot vanish at the point
x = x1 because then it would follow from the uniqueness theorem for the solutions of
(2.1) that u1(x) ≡ 0, which is impossible. So, u′1(x0) > 0. By similar method u′1(x1) < 0.
Since p(x) > 0, u1(x0), u2(x1) > 0, u′1(x0) > 0 and u′1(x1) < 0 the left hand side of
the equation 2.10 is nonpositive,but the right-hand side is positive. Hence we obtain a
contradiction. Thus between any two consecutive zeros of u1(x) there is at least one zero
of u2(x).

ii)Assume that both u1(x) < 0 and u2(x) < 0 are negative in the interval (x0, x1).
This could be represented in a similar way to the case i)).

iii) Let u1(x) < 0 and u2(x) > 0 in the interval (x0, x1). These conditions ensure that
the integral on the right in (2.10) is negative. However, on the left, we have u1(x0) =
u1(x1) = 0 with u′1(x0) < 0 and u′1(x1) > 0. The left hand side therefore becomes

p(x1)u
′
1(x1)u2(x1)− p(x0)u2(x0)u

′
1(x0) > 0 (2.11)
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which presents us with a contradiction right-hand side negative and left-hand side posi-
tive. Hence we obtain a contradiction. Thus u2(x) = 0 has at least one zero between the
consecutive zeros x0, x1 of u1(x).

iv) Let u1(x) > 0 and u2(x) < 0 in the interval (x0, x1). This is similar to previous
case.

Case 2. Let (x0, x1) ⊂ (0, 1] This case easily proved similarly to case 1).

Case 3. Let −1 ≤ x0 < 0 < x1 ≤ 1. Integrating on both sides of the equation (2.7)
over [x0, 0) to (0, x1] we get

[p(x)(u′1u2 − u′2u1)]|0−x0 + [p(x)(u′1u2 − u′2u1)]|x1
0+ = (λ2 − λ1)[

0−Z

x0

u1u2dx

+

x1Z

0+

u1u2dx]. (2.12)

Since u1(x0) = u1(x1) = 0 we obtain

p(0−)(u′1(0−)u2(0−)− u′2(0−)u1(0−))− p(0+)(u′1(0+)u2(0+)− u′2(0+)u1(0+))

+p(x1)u
′
1(x1)u2(x1)− p(x0)u

′
1(x0)u2(x0) = (λ2 − λ1)[

0−Z

x0

u1(x)u2(x)dx

+

x1Z

0+

u1(x)u2(x)dx]. (2.13)

Using the transmission conditions

u(0−) = u(0+), u′(0+)− u′(0−) = δu(0), p(0−) = p(0+)

we find

p(0−)(u′1(0−)u2(0−)− u′2(0−)u1(0−)) = p(0+)(u′1(0+)u2(0+)− u′2(0+)u1(0+)).

By writing this result in (2.13) we get

p(x1)u
′
1(x1)u2(x1)− p(x0)u

′
1(x0)u2(x0) = (λ2 − λ1)[

0−Z

x0

u1(x)u2(x)dx +

x1Z

0+

u1(x)u2(x)dx].

Without loss of generality we shall assume that u1(x) > 0 and u2(x) > 0 in the interval
[x0, 0) ∪ (0, x1). Thus, the right-hand side of the last equality is positive. On the left,
since u1(x) > 0 by assumption, the function in increasing at the point x0. In this case
u′1(x0) > 0. By the same method u′1(x1) < 0. Consequently, he left hand side of the last
equation is negative. This is a contradiction. The proof is complete.

Theorem 2.2. There are an infinitely increasing sequence of eigenvalues λ0, λ1, λ2, ... of
the boundary value problem (1.1)−(1.3). Moreover, if W (ϕ(x, λ1), ϕ(x, λ2); 0+) < 0 than
the eigenfunction corresponding to the eigenvalue λn has exactly n zeros on [−1, 0)∪(0, 1].
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