Volume 3 (2018), 43-55 ### 2nd International Symposium on Innovative Approaches in Scientific Studies November 30 - December 2, 2018, Samsun, Turkey # An Extensive Review on Nanofluids - Based on Available Experimental Studies Mahmut Kaplan^{1*}, Melda Özdinç Çarpınlıoğlu²⁺ ¹Department of Mechanical Engineering, Amasya University, Amasya, Turkey ²Department of Mechanical Engineering, Gaziantep University, Gaziantep, Turkey *Corresponding author: mahmut.kaplan@amasya.edu.tr +Speaker: mahmut.kaplan@amasya.edu.tr Presentation/Paper Type: Oral / Full Paper **Abstract** – In recent years, nanofluids, the dispersion of nanoparticles with sizes less than 100 nm in base fluids, have been attracted the interest of many researchers due to their capability of enhancing thermophysical properties. In this review paper, experimental studies on nanofluids have been analysed collectively for the period from 1993 to 2018. Preparation techniques and thermophysical properties of nanofluids were given in tabular form. Despite the fact that there are a lot of review studies, the aim of this work is to give all of the studies about nanofluids on a common objective basis to facilitate future research in this area. Keywords - Nanofluids, preparation, characterization, stability, thermophysical properties #### I. INTRODUCTION Nanofluid is a fluid produced by dispersing nanometer-sized materials (nanoparticles, nanofibers, nanotubes, nanowires, nanorods and nanosheets, generally less than 100 nm) in base fluids such as water, ethylene glycol, propylene glycol, oil and refrigerants with or without surfactants. This term was first used by Choi who developed a new class of heat transfer fluids at Argonne National Laboratory in U.S.A [1]. Researchers used different types of nanoparticles including single elements (e.g., Al, Cu), oxides (e.g., Al₂O₃, CuZnFe₄O₄), carbides (e.g., SiC, B₄C), metal nitrides (e.g., SiN, TiN), carbon materials (e.g., graphite, carbon nanotubes, diamond) and hybrid nanoparticles. Two primary methods are used to prepare nanofluids: the one-step method and the two-step method. In the one-step method, the agglomeration of nanoparticles is minimized and dispersion of nanoparticles is avoided. In the two-step method, nanomaterials are first produced as dry powders by chemical or physical techniques and later the nanosized nanosized powder is dispersed into a base fluid. Two-step method can be preferred for synthesizing nanofluids in large scale. However, a homogeneous mixture in the two-step method is still a problem. In order to overcome the stability problem in nanofluids, different methods are available (ultrasonic treatments, stirring, adding surfactants and adjusting pH value). The stability of nanoparticle in the base fluid and the shape, size and structure of nanoparticles are different evaluated characterization (transmission electron microscopy (TEM), scanning electron microscope (SEM), dynamic light scattering (DLS), x-ray diffraction (XRD), fourier transform infrared (FT-IR) spectroscopy, energy dispersive spectroscopy (EDS), ultra violet-visible (UV-Vis) spectrophotometer, centrifugation, sediment photograph capturing, sedimentation balance and zeta potential analysis). Recent experimental investigations have indicated that nanofluids have different thermophysical properties compared to those of base fluid. Most of them have focused on thermal conductivity because of adding small amount of nanoparticles leading to a significant increase in thermal conductivity of base fluids. However, other thermophysical properties such as viscosity, density and specific heat of nanofluids are also different from those of basefluid. In this work, experimental studies related to enhancement of thermophysical properties (thermal conductivity, dynamic viscosity, density and specific heat) of nanofluids and different preparation techniques in their synthesis are reviewed and presented in tabular forms for the convenience of the audience. # II. PREPARATION, STABILITY AND CHARACTERIZATION OF NANOFLUIDS Preparation process is the first significant step in experimental studies because of its remarkable effect on stability and thermophysical properties of nanofluids. The available experimental studies on the preparation, stability and characterization of nanofluids are summarized according to different base fluids of water, ethylene glycol, ethylene glycol-water and some other in Table 1. Two-step method [2]-[22], [24]-[71] has been more commonly used method comparing to one-step method [23]. However, in two-step method, the agglomeration and sedimentation of nanoparticles are big challenges for a homogeneous suspension. Table 1. An outline of previous studies on nanofluids | Researcher | Base fluid | Nanoparticle | Particle shape
- size | Particle
concentration
(vol.% / wt.%) | Preparation
method | Stability
enhancement
technique | Characterization
technique | Reference | |---|--|--|---|---|-----------------------|---|---|-----------| | Masuda et al.
(1993) | Water | Al ₂ O ₃ ;
SiO ₂ ;
TiO ₂ | Spherical
13 nm;
12 nm;
27 nm | 5,10,15 wt.%
2.5, 5 wt.%
4, 8, 12, 16
wt.% | Two-step | pH control | ТЕМ | 2 | | Wang et al.
(1999) | Water,
ethylene
glycol,
vacuum
pump fluid,
engine oil | Al ₂ O ₃ ;
CuO | Spherical
28 nm;
23 nm | 0-15 vol.% | Two-step | Ultrasonication | TEM | 3 | | Putra et al.
(2003) | Water | Al ₂ O ₃ ; CuO | Spherical
131.2 nm;
87.3 nm | 1-4 vol.% | Two-step | Ultrasonication | ТЕМ | 4 | | Wen et al. (2004) | Water | Al ₂ O ₃ | Spherical
27–56 nm | 0-1.6 vol.% | Two-step | Ultrasonic bath,
adding SDBS
surfactant | SEM | 5 | | Murshed et al. (2005) | Water | TiO ₂ | Spherical
15 nm;
Rod-shapes
diameter:
10 nm,
length:
40 nm | 0.5-5 vol.% | Two-step | Ultrasonication,
adding oleic acid
and
CTAB surfactants | ТЕМ | 6 | | Ding et al.
(2006) | Water | MWCNT
(Multi-walled
carbon
nanotubes) | - | 0-1 wt.% | Two-step | Ultrasonication,
adding GA
surfactant, pH
control, high
shear homogeniser | TEM, SEM | 7 | | Hwang et al.
(2006) | Water | MWCNT;
CuO;
SiO ₂ | Cylindrical
diameter:
10-30 nm,
length:
10-50µm;
Spherical
33 nm; 12 nm | 0- 1 vol.% | Two-step | Ultrasonication,
adding SDS
surfactant | Microscopic
technique | 8 | | He et al.
(2007) | Water | TiO ₂ | Spherical
95 nm | 0-2.5 vol.% | Two-step | Ultrasonication | SEM | 9 | | Hwang et al. (2007) | Water | MWCNT | Cylindrical
diameter: 10-30
nm, length:10-
50 µm | 0- 1 vol.% | Two-step | Ultrasonication,
adding SDS
surfactant, | - | 10 | | Zhang et al.
(2007) | Water | CNT | Cylindrical
diameter: 150
nm
length:10µm | 0-1 vol.% | Two-step | Ultrasonication,
adding SDS
surfactant | TEM | 11 | | Li et al.
(2008) | Water | Cu | Spherical
25 nm | 0.1-0.8 wt.% | Two-step | Ultrasonication,
adding SDBS
surfactant,
changing pH
control | TEM, zeta potential | 12 | | Murshed et al.
(2008) | Water | Al ₂ O ₃ ;
TiO ₂ | Spherical
80, 150 nm;
15 nm | 0-5 vol.% | Two-step | Ultrasonication,
adding CTAB
surfactant, | - | 13 | | Nguyen et al.
(2008) | Water | Al_2O_3 | Spherical
36, 47 nm | 1–9.4 vol.% | Two-step | - | - | 14 | | Duangthongsuk
and
Wongwises
(2009) | Water | TiO ₂ | Spherical
21 nm | 0.2– 2 vol.% | Two-step | Stirring, ultrasonic
vibrator, pH
control | TEM | 15 | | Mintsa et al.
(2009) | Water | Al ₂ O ₃ ;
CuO | Spherical
36, 47 nm;
29 nm | 0-18 vol.% | Two-step | Stirring | - | 16 | | Zhu et al.
(2009) | Water | $\mathrm{Al}_2\mathrm{O}_3$ | Spherical
15–50 nm | 0.02–0.15 wt.% | Two-step | Adding SDBS
surfactant, pH
control, stirring,
ultrasonic vibrator | TEM, zeta potential,
UV-Vis
Spectrophotometer | 17 | Table 1. An outline of previous studies on nanofluids (continued) | Researcher | Base fluid | Nanoparticle | Particle
shape - size | Particle
concentration
(vol.% / wt.%) | Preparation
method | Stability
enhancement
technique | Characterization technique | Reference | |------------------------------|--|---|---|--|-----------------------|--|-------------------------------------|-----------| | Beck et al.
(2010) | Water,
ethylene
glycol, and
ethylene
glycol- water
(50:50 wt.%) | $\mathrm{Al}_2\mathrm{O}_3$ | Spherical
10-50 nm | 1, 3, 4 vol.% | Two-step | Ultrasonic
agitation | - | 18 | | Chandrasekar et al. (2010) | Water | Al ₂ O ₃ | Spherical
43 nm | 0.33–3 vol.% | Two-step | Ultrasonic
vibration | SEM | 19 | | Godson et al.
(2010) | Water | Silver | Spherical
60 nm | 0.3, 0.6, 0.9
vol.% | Two-step | Ultrasonic
vibration,
stirring | The powder x-ray diffraction (PXRD) | 20 | | Teng et al.
(2010) | Water | Al ₂ O ₃ | Spherical
20, 50, 100
nm | 0.5–2 wt.% | Two-step | Ultrasonic
vibration | TEM | 21 | | Yeganeh et al.
(2010) | Water | Nanodiamond
(ND) | Spherical
4 nm
(average) | 0.8-3 vol.% | Two-step | Ultrasonic
waves | XRD, TEM | 22 | | Gandhi et al.
(2011) | Water | graphene | Graphene
sheet
length:
5–1500 nm |
0.01–0.2 vol.% | One-step | 1 | TEM, UV-Vis
spectrophotometer | 23 | | Suresh et al.
(2011) | Water | Al ₂ O ₃ –Cu
hybrid
particles | Spherical
17 nm | 0.1–2 vol.% | Two-step | Adding SLS
surfactant,
ultrasonic
vibrator | SEM, XRD | 24 | | Aladag et al.
(2012) | Water | Al ₂ O ₃ ;
CNT | Spherical
30 nm;
Cylindrical
200 µm × Ø9
µm | 1 wt.% | Two-step | Adding
surfactant | DLS | 25 | | Hung and Chou
(2012) | Water | MWCNT | Cylindrical
outer
diameter:
20–30 nm | 0.25–1.5 wt.% | Two-step | Adding
chitosan
surfactant used,
ultrasonic
vibrator | TEM, DLS, UV-Vis spectrophotometer | 26 | | Suganthi and Rajan
(2012) | Water | ZnO | Spherical
35–40 nm | 0.25–2 vol.% | Two-step | Adding SHMP
surfactant,
ultrasonication | SEM, zeta potential | 27 | | Yiamsawasd et al.
(2012) | Water | TiO2, Al2O3, | Spherical
21, 120 nm | 0–8 vol.% | Two-step | Ultrasonic
vibrator | TEM | 28 | | Halelfadl et al.
(2013) | Water | CNT | Cylindrical
diameter:
9.2 nm
length:
1.5 µm | 0.0055–0.55
vol.% | Two-step | Ultrasonication,
adding SDBS
surfactant,
stirring | SEM | 29 | | Mena et al.
(2013) | Water | Al_2O_3 | Spherical
13–131 nm | 0–1% | Two-step | pH control | - | 30 | | Reddy and Rao
(2013) | Water,
ethylene
glycol-water
(40:60, 50:50
wt.%) | TiO ₂ | Spherical
21 nm | 0.2-1 vol.% | Two-step | Adding oleic
acid and CTAB
surfactants,
ultrasonic bath | - | 31 | | Sundar et al.
(2013) | Water | Fe ₃ O ₄ | Spherical
40 nm | 0–2 vol% | Two-step | Adding CTAB
surfactant,
ultrasonic bath | Zeta potential | 32 | | Esfe et al.
(2014) | Water | MgO | Spherical
40 nm | 0.0625, 0.125,
0.25, 0.5, 1,
1.13 vol.%. | Two-step | Ultrasonic
vibrator, adding
CTAB
surfactant | TEM | 33 | | Ghanbarpour et al
(2014) | Water | Al ₂ O ₃ | Spherical
75 nm | 3-50 wt.% | Two-step | Ultrasonic bath | TEM, DLS | 34 | | Hajjar et al.
(2014) | Water | graphene oxide
(GO) | Nanosheet | 0.05, 0.1, 0.15,
0.2 & 0.25
wt.% | Two-step | Stirring,
ultrasonication | SEM, XRD, UV-Vis spectrophotometer | 35 | | Said et al.
(2014) | Water | Al ₂ O ₃ ;
TiO ₂ | Spherical
109.4 nm;
126.9 nm | 0.05–0.3 vol.% | Two-step | Ultrasonication,
high pressure
homogenizer,
pH control | TEM, FESEM,
DLS, zeta potential | 36 | Table 1. An outline of previous studies on nanofluids (continued) | Researcher | Base fluid | Nanoparticle | Particle
shape - size | Particle
concentration
(vol.% / wt.%) | Preparation
method | Stability
enhancement
technique | Characterization
technique | Reference | |------------------------------------|--|---------------------------------------|---|--|-----------------------|---|---|-----------| | Esfe et al. (2015) | Water | Fe | Spherical
37, 71, 98 nm | 0–1 vol.% | Two-step | Ultrasonic
Vibrator | - | 37 | | Afrand et al. (2016) | Water | Fe ₃ O ₄ | Spherical
20–30 nm | 0-3 vol.% | Two-step | Magnetic stirring,
ultrasonic
processor | XRD | 38 | | Megatif et al. (2016) | Water | CNT-TiO ₂
(Hybrid) | - | 0.1, 0.15, 0.2
wt.% | Two-step | Ultrasonication,
stirring | SEM, XRD | 39 | | Said
(2016) | Water | SWCNT | Cylindrical
diameter:
1–2 nm,
length:
500 nm | 0.1, 0.25, 0.5
vol.% | Two-step | Adding SDS
surfactant, high-
pressure
homogenizer,
ultrasonication | TEM, zeta potential | 40 | | Sundar et al.
(2016) | Water | ND | Spherical
80-100 nm | 0.2-1 vol.% | Two-step | Ultrasonic
Bath | TEM, XRD, FT-IR,
zeta potential | 41 | | Huminic et al. (2017) | Water | SiC | Spherical
<25 nm | 0.5, 1 wt.% | Two-step | Adding CMCNa
surfactant,
ultrasonic
homogenizer | TEM, XRD | 42 | | Bouguerra et al. (2018) | Water | Al ₂ O ₃ | Spherical
50 nm | 0.2–2 vol.% | Two-step | pH control,
ultrasonication | - | 43 | | Gao et al.
(2018) | Water | Graphene
nanoplatelet
(GNP) | Cylindrical
sheet
diameter:
20µm,
thickness:
6 nm | 0-0.15 wt.% | Two-step | Ultrasonication | SEM, UV–Vis
absorption spectrum
analysis | 44 | | Heyhat and
Irannezhad
(2018) | Water | Ag;
SiC;
Graphene oxide
(GO) | Spherical
20 nm;
55 nm;
Nanosheet | 100-1000 ppm;
0.25-1 vol.%;
0.02-0.05 wt.% | Two-step | Adding PVP
surfactant for Ag
and CTAB for
SiC, ultrasonic
bath | TEM | 45 | | Liu et al. (2005) | Ethylene
glycol,
synthetic
engine oil | CNT | Cylindrical
inner
diameter:
5-10 nm,
outer
diameter:
20-50 nm | 0.2–1.0 vol. %,
1.0–2.0 vol.% | Two-step | Magnetic stirring
ultrasonic
homogenizer,
adding NHS
surfactant in
synthetic engine
oil suspensions | SEM, high-resolution
transmission electron
microscopy (HRTEM),
XRD | 46 | | Chopkar et al.
(2006) | Ethylene
glycol | Al ₇₀ Cu ₃₀ | Spherical
20-40 nm | 0.2–2.0 vol.% | Two-step | Adding oleic acid
surfactant,
intensive
ultrasonic
vibration,
magnetic stirring | XRD, TEM | 47 | | Chen et al. (2007) | Ethylene
glycol | TiO ₂ | Spherical
25 nm | 0–8 wt% | Two-step | Ultrasonication | SEM | 48 | | Yu et al.
(2009) | Ethylene
glycol | ZnO | Spherical
10–20 nm | 0–5 vol.% | Two-step | Stirring,
ultrasonication | SEM | 49 | | Moosavi et al.
(2010) | Ethylene
glycol,
glycerol | ZnO | Spherical
67.17 nm | 0–3 vol.% | Two-step | Adding
ammonium citrate
surfactant, stirring | TEM, SEM, XRD | 50 | | Paul et al. (2011) | Ethylene
glycol | Al ₉₅ Zn ₀₅ | Spherical
10–30 nm | 0.01–0.10
vol.% | Two-step | Ultrasonic
vibration,
magnetic stirring | TEM, SEM, XRD,
EDS, SAD analysis | 51 | | Yu et al.
(2011) | Ethylene
glycol | Graphene,
graphene oxide
(GO) | Nanosheet
thickness:
0.7-1.3 nm | 1–5 vol.% | Two-step | Ultrasonication,
adding SDBS
surfactant. | TEM, HRTEM, atomic
force microscopy
(AFM), FT-IR | 52 | | Yu et al.
(2011a) | Ethylene
glycol,
propylene
glycol | Aluminum
nitride (AIN) | Spherical
50 nm | 1–10 vol.% | Two-step | Stirring,
ultrasonication | SEM | 53 | | Gallego et al.
(2014) | Ethylene
glycol | ZnO | Spherical
40-100 nm | 0-6.2 vol.% | Two-step | Ultrasonic
homogenizer | SEM, EDS, XRD,
TEM | 54 | Table 1. An outline of previous studies on nanofluids (continued) | Researcher | Base fluid | Nanoparticle | Particle
shape - size | Particle
concentration
(vol.% / wt.%) | Preparation
method | Stability
enhancement
technique | Characterization technique | Reference | |-----------------------------------|---|--|---|---|-----------------------|--|--|-----------| | Akilu et al.
(2017) | Ethylene
glycol | TiO ₂ -CuO/C
(hybrid) | Spherical
26, 20 nm | 0.5, 1, 1.5, 2
vol.% | Two-step | Wet mixing
approach using
hexane,
ultrasonication | FE-SEM, EDS, XRD | 55 | | Zyla
(2017) | Ethylene
glycol | MgO | Spherical
20 nm | 1.6, 3.4, 5.2, 7.2
vol.% | Two-step | Mechanical
stirring,
ultrasonication | SEM | 56 | | Zyla and Fal
(2017) | Ethylene
glycol | SiO ₂ | Spherical
7-14 nm | 0.5, 1, 1.5, 2,
2.6 vol.% | Two-step | Mechanical
stirring,
ultrasonication | SEM | 57 | | Ahmadi et al.
(2018) | Ethylene
glycol | CuO | Spherical
47.6 nm
(average) | 0-2 vol.% | Two-step | - | - | 58 | | Keyvani et al.
(2018) | Ethylene
glycol | Cerium oxide | Spherical
10-30 nm | 0.25-2.5 vol.% | Two-step | Adding CTAB
surfactant,
stirring,
ultrasonic
waves | Zeta potential | 59 | | Namburu et al.
(2007) | Ethylene
glycol-water
(60:40 wt%) | CuO | Spherical
29 nm | 0-6.12 vol.% | Two-step | Ultrasonic
agitator | - | 60 | | Sahooli and
Sabbaghi
(2013) | Ethylene
glycol-water
(65:35 wt%) | CuO | Spherical
30-80 | 0.01-0.1 wt.% | Two-step | Magnetic
stirring,
ultrasonication | SEM, Particle Size
Analyzer (PSA), zeta
potential | 61 | | Elias et al.
(2014) | Ethylene
glycol-water
(50:50 wt.%) | Al_2O_3 | Spherical
13 nm | 0-1 vol.% | Two-step | Ultrasonic
homogenizer | Sediment photograph capturing | 62 | | Sundar et al. (2014) | Ethylene
glycol-water
(20:80,
40:60, 60:40
wt.%) | Al ₂ O ₃ | Spherical
36 nm | 0.3-1.5 vol.% | Two-step | Ultrasonic
cleaner (bath) | SEM, XRD, zeta potential | 63 | | Kole and Dey
(2011) | Gear oil | CuO | Spherical
40 nm | 0.5–2.5 vol.% | Two-step | Adding oleic
acid surfactant,
intensive
ultrasonication,
magnetic force
agitation | FT-IR, DLS | 64 | | Dudda and Shin
(2013) | NaNO ₃ -
KNO ₃ (60:40
wt.%) | SiO ₂ | Spherical
5, 10, 30, 60
nm | 1 wt.% | Two-step | Ultrasonication | SEM | 65 | | Lu and Huang
(2013) | NaNO ₃ -
KNO ₃ (60:40
wt.%) | Al ₂ O ₃ | Spherical
13, 90 nm | 0.9, 2.7, 4.6
vol.% | Two-step | Ultrasonication | SEM, EDS | 66 | | Moghaddam et al.
(2013) | Glycerol | Graphene | Nanosheets
size of the
few layer
graphene:
15–50
nm | 0.25–2
mass
fractions% | Two-step | Ultrasonication | TEM, SEM, Raman
spectroscopy, FT-IR,
HRTEM, EDX
analysis, XRD,
Boehms titration
analysis, N2
adsorption-desorption
technique. | 67 | | Rashin and
Hemalatha (2013) | Coconut oil | CuO | Spherical
20 nm | 0–2.5 wt.% | Two-step | Ultrasonication | TEM, HRTEM, XRD | 68 | | Tiznobaik and
Shin
(2013) | Li ₂ CO ₃ -
K ₂ CO ₃
(62:38 molar
ratio) | SiO ₂ | Spherical
5, 10, 30, 60
nm | 1 wt.% | Two-step | Ultrasonication | SEM | 69 | | Manikandan et al.
(2014) | Propylene
glycol | Sand | Spherical
20–25 nm | 0 to 2 vol.% | Two-step | Stirring by bead
milling,
ultrasonication | XRD, zeta potential,
FT-IR | 70 | | Sang and Liu
(2017) | K ₂ CO ₃ -
Li ₂ CO ₃ -
Na ₂ CO ₃
(4:4:2 mass
ratio) | SiO ₂ ;
CuO;
TiO ₂ ;
Al ₂ O ₃ | Spherical 5 nm; 20 nm; 30 nm; 60 nm | 1 wt.% | Two-step | Ultrasonication | Differential scanning
calorimetry (DSC),
SEM, XRD | 71 | Ultrasonic treatment [3]-[13], [15], [17]-[22], [24], [26]-[29], [31-49], [51]-[57], [59]-[71] is used to break down the clusters of nanoparticles. There are two types of ultrasonication methods as direct method (using probe) and indirect method (using ultrasonic bath). Sundar et al. [41] prepared nanodiamond (ND)—water nanofluids using two-step method and observed reducing ND particle agglomerations with the ultrasonication bath. The ultrasonication method is generally used with stirring method. Zyla and Fal [57] prepared suspensions of silicon dioxide (SiO₂) nanoparticles in (7-14 nm) ethylene glycol (EG) using mechanical stirring and the sonication with ultrasound wave bath. The addition of surfactants - dispersants is used to reduce the surface tension of the base fluid and improve wetting behaviour. Therefore dispersants improve the stability and thermophysical properties of nanofluids. Researchers employed different type of surfactants including sodium dodecylbenzenesulfonate (SDBS) [5], [12], [17], [29], [52] oleic acid [6], [31], [47], [64] and Cetyltrimethylammonium bromide (CTAB) [6, 13, 31-33, 45, 59], gum Arabic (GA) [7] sodium dodecyl sulfate (SDS) [8], [10]-[11],[40], Sodium lauryl sulphate (SLS) [24], chitosan [26], sodium hexametaphosphate (SHMP) [27], carboximethyl cellulose (CMC-Na) [42], Polyvinylpyrrolidone (PVP) [45], Nhydroxysuccinimide (NHS) [46], ammonium citrate [50]. pH value of nanofluids also influences the stability of nanofluids. Since nanoparticles surface charge depends on pH values of the suspension, optimal pH value can reduce the agglomeration with increasing repulsive forces between nanoparticles. Ding et al. [7] experimentally investigated the heat transfer behaviour of aqueous suspensions of multiwalled carbon nanotubes (CNT) nanofluids flowing through a horizontal tube. Their results showed that CNT nanofluids were found to be very stable for months without visually observable sedimentation after a preparation process including sonication for over 24 hours, adding Gum Arabic dispersant, adjusting the suspension to a preset pH level and treating the mixture with the high shear homogeniser for 30 min. Various characterization techniques of nanofluids have been developed. TEM and SEM are widely used microscopic techniques to determine the shape, size and distribution of nanoparticles. XRD is employed to determine the crystal structure of crystalline materials. FT-IR spectroscopy is done to study the nanoparticle. DLS analysis is performed to estimate the average disperse size of nanoparticles in the base liquid media. Zeta potential measurement is one of the most critical tests to validate the quality of the nanofluids stability via a study of its electrophoretic behavior. Zeta potential is the potential difference between the dispersion medium and the stationary layer of fluid attached to the nanoparticle. The rising electrostatic repulsive forces between nanoparticles leads to an increase in the value of zeta potential which indicates better stability of nanofluids. Since zeta potential analysis is applicable only for the certain viscosity of fluid, UV-vis-spectrophotometer is commonly utilized determine the stability of nanofluids including all base fluids. On the other hand, the sedimentation photograph capturing method is easy and cheap method and the formation of sediments is detected by capturing photograps at equal intervals of time using a camera. The visual investigation of sedimentation of nanofluids is also performed by centrifugation method which is a much faster method compared to the photograph capturing method. Hajjar et al. [35] estimated the charcteristics of graphene oxide (GO) nanosheets-water mixture which was stirred and sonicated using an ultrasonicwashing machine. The size and morphological characterization of the GO nanosheets (GONs) were examined by using SEM and XRD and UVvis-spectrophotometer were used to investigate the structure of GONs. Said et al. [36] used the ultrasonicator, high pressure homogenizer and pH control to dissolve Al₂O₃ (13 nm) and TiO₂ (21 nm) nanoparticles into water. The mean nanoparticle diameters were studied by DLS technique, and the nanofluid Field emission scanning electron microscopy (FESEM) and TEM were used to achieve the morphological characterization of the the nanoparticles. In order to determine the nanofluid stability, a zetasizer Nano instrument was used by measure zeta potential of the nanoparticles in water. Elias et al. [62] prepared Al₂O₃ (13 nm) nanoparticles 50:50% by weight of ethylene glycol-water mixture by using an ultrasonic homogenizer. The stability of the nanofluid was been checked with sedimentation photograph capturing method. Also, Moghaddam et al. [67] fabricated graphene—glycerol nanofluids with the help of a sonicator. After the preparation, the morphology and structure of the graphene sheets were characterized by nine methods, namely TEM, high resolution transmission emission electron microscopy (HRTEM), SEM, Raman spectroscopy, FT-IR spectroscopy, energy-dispersive X-ray (EDX) analysis, powder X-ray diffraction, Boehm,s titration, and N2 adsorption—desorption technique. ## III. THERMOPHYSICAL PROPERTIES OF NANOFLUIDS Suspension of nanomaterials in the base fluids results in the modification of thermophysical properties such as thermal conductivity, viscosity, density and specific heat. A detailed summary of the available experimental studies on thermophysical properties of various nanofluids is presented in Table 2. The thermal conductivity of nanofluids is measured by different methods such as the transient hot wire, temperature oscillation and steady-state parallel plate. The transient hot wire method is widely used for measuring thermal conductivity due to low uncertainty with a short measurement time. The methods to measure the rheological characteristics of the nanofluids are mainly divided into two groups including the flow type such as capillary and orifice (cup) viscometers and the drag type such as rotational, falling object and vibrational/oscillating viscometers. The parameters related to the enhancement of thermophysical properties are base fluid type, nanoparticle type, size, shape and concentration, temperature, adding surfactants, pH value of base fluids and sonication time. Table 2. An outline of previous studies on thermophysical properties of nanofluids | Researcher | Measurement
methods | Temperature
range | k enhancement
(%) | μ enhancement
(%) | ρ enhancement (%) | C _p enhancement (%) | Reference | |---|---|----------------------|--|---|-------------------|--------------------------------|-----------| | Masuda et al.
(1993) | Transient hot wire, viscometer | 27–72 °C | 32% increase with 4.3 vol.% at 32 °C. | 245% increase with 4.3 vol.% at 72 °C. | - | - | 2 | | Wang et al.
(1999) | Steady-state parallel-
plate, viscometer | Room
temperature | 55% increase with 9.6 vol.% at room temperature. | 85% increase with
5 vol.% at room
temperature. | - | - | 3 | | Putra et al.
(2003) | Temperature
oscillation technique
(Polyoxymethylene,
cylindrical block and
thermocouples) | 20–50 °C | 36% increase with 4 vol.% at 50 °C. | - | - | - | 4 | | Wen et al.
(2004) | Copper tube with a
silicon rubber
flexible heater and
thermocouples | 22 °C | 9.8% increase with 1.6 vol.% at 22 °C. | - | 1 | 1 | 5 | | Murshed et al.
(2005) | Transient hot wire | Room
temperature | Near to 33% and 30% increase for rod and spherical shapes particles at 5 vol.% respectively. | - | - | - | 6 | | Ding et al. (2006) | Transient hot wire,
Bohlin CVO
rheometer | 20, 25, 30 °C | 80% increase with 1 wt.% at 30 °C. | - | - | - | 7 | | Hwang et al.
(2006) | Transient hot wire | - | Up to 11.3% increase with 1 vol.%. | - | - | - | 8 | | He et al.
(2007) | Transient hot wire | 22 °C | 5% increase with 2 vol.% at 22 °C. | Approximately 11% increase with 2 vol.% at 22 °C. | - | - | 9 | | Hwang et al. (2007) | Transient hot wire | Room
temperature | 7% increase with 1 vol.% at room temperature. | 1 | 1 | 1 | 10 | | Zhang et al.
(2007) | The transient short
hot wire | 23 °C | 42% increase with 0.9 vol.% at 23 °C. | - | - | - | 11 | | Li et al.
(2008) | Hot
Disk Thermal
Constants Analyser | 25–30 °C | Nearly 18% increase with 0.8 w.t.% at 25-30 °C. | - | - | - | 12 | | Murshed et al.
(2008) | Transient hot wire,
controlled rate
rheometer | 20–60 °C | 12% increase with 1 vol.% at 60 °C. | 82% and 84% increase with 5 vol.% and 4 vol.% for Al ₂ O ₃ and TiO ₂ , respectively. | - | - |
13 | | Nguyen et al.
(2008) | The piston-type
viscometer
(ViscoLab450
model) | 22–75°C | - | 5.47% increase with 12.9 vol.% at 22 °C. | - | - | 14 | | Duangthongsuk
and
Wongwises
(2009) | Transient hot wire,
Bohlin rotational
rheometer | 15–35 °C | 8% increase with 2 vol.% at 15 °C. | 17% increase with 2 vol.% at 35 °C. | - | - | 15 | | Mintsa et al.
(2009) | Transient hot wire | Room
temperature | 19% increase with 3.1 vol.% at 38.5 °C. | - | - | - | 16 | | Zhu et al.
(2009) | Transient plane source (TPS) | 25–30 °C | 10.1% increase with 0.15 wt.% at 25-30 °C. | - | - | - | 17 | | Beck et al.
(2010) | The transient hot wire | 23–137 °C | 14% increase with 4 vol.% at 76 °C | - | - | - | 18 | | Chandrasekar et
al.
(2010) | Transient hot wire,
Brookfield cone and
plate viscometer | Room
temperature | 10% increase with 3 vol.% at room temperature. | 136% increase
with vol. 5% at
room temperature. | - | - | 19 | | Godson et al.
(2010) | Transient hot wire,
reverse-flow
viscometer | 50-90 °C | 129% increase with 0.9 vol. % at 90 °C. | 44% increase with vol. 0.9% at 90 °C. | - | - | 20 | | Teng et al.
(2010) | Transient hot wire | 10–50 °C | 14.6% increase with 2 wt.% at 50 °C. | - | - | - | 21 | Table 2. An outline of previous studies on thermophysical properties of nanofluids (continued) | Researcher | Measurement
methods | Temperature range | k enhancement (%) | μ enhancement
(%) | ρ enhancement (%) | C _p enhancement (%) | Reference | |---------------------------------|---|------------------------|---|--|-------------------------------------|---------------------------------------|-----------| | Yeganeh et al.
(2010) | Transient hot wire | 30–50 °C | 9.8 % increase with 3 vol.% at 50 °C. | - | - | - | 22 | | Gandhi et al.
(2011) | Transient hot wire | 30–50 °C | 27 % increase with 0.2 vol.% at 50 °C. | - | - | - | 23 | | Suresh et al.
(2011) | Transient hot wire,
Brookfield cone and
plate viscometer
(LVDV-I PRIME
C/P) | Room
temperature | 12 % increase with 2 vol.% at room temperature. | 103 % increase with 2 vol.% at room temperature. | - | - | 24 | | Aladag et al.
(2012) | A stress controlled rheometer | 2–10 °C | - | 26% decrease with 1 wt.% when the temperature increased from 2 to 10 °C. | - | - | 25 | | Hung and Chou
(2012) | Transient hot wire,
viscometer | Room
temperature | 8.9 % increase with 1.5 wt.% at room temperature. | 235 % increase with
1.5 wt.% at room
temperature. | - | - | 26 | | Suganthi and
Rajan
(2012) | Viscometer
(LVDV II+ PRO) | 35–55 °C | - | 18 % increase with 1.5 vol.% at 35 °C. | - | - | 27 | | Yiamsawasd et al. (2012) | Transient hot wire | 15–60 °C | 23 % increase with 8 vol.% at room temperature. | - | - | - | 28 | | Halelfadl et al. (2013) | A stress-controlled rheometer | 0–40 °C | - | 510 % increase with 0.557 vol.% at 10 °C. | - | - | 29 | | Mena et al.
(2013) | A Brookfield
rheometer, model
LVDV-III, with a
cone-plate geometry
(spindle CPE-40) | 20–70 °C | - | Maximum viscosity
of 2.45 cP was
obtained 4 vol.% at
10 °C. | - | - | 30 | | Reddy and Rao
(2013) | Thermal conductivity apparatus with thermocouples | 30-70 °C | 5%, 12% and 7% increase for water, 40:60 and 50:50 ethylene glycol-water base fluids with 1 vol.% at 70 °C, respectively. | - | - | - | 31 | | Sundar et al.
(2013) | Transient hot wire,
AR-1000 rheometer
(TA Instruments) | 20–60 °C | 48 % increase with 2 vol.% at 60 °C. | 197 % increase with 2 vol.% at 60 °C. | - | - | 32 | | Esfe et al.
(2014) | Transient hot wire | 24.7–60 °C | 25 % increase with 1.13 vol.% at 60 °C. | 13 % increase with 1.13 vol. | - | - | 33 | | Ghanbarpour et al (2014) | TPS, rotating coaxial cylinder viscometer. | 20–50 °C | 87.5 % increase with 50 wt.% at 20 °C. | 300 % increase with 50 wt.% at 50 °C. | - | - | 34 | | Hajjar et al.
(2014) | Transient short hot
wire | 10–40 °C | 47.54 % increase with 0.25 wt.% at 40 °C. | - | - | - | 35 | | Said et al.
(2014) | Transient hot-wire, Brookfield Viscometer (DV- II+Pro Programmable Viscometer), | 25–80 °C | 20 % increase with 0.3 vol.% at 80 °C. | 5% increase with 0.5 vol.% for Al ₂ O ₃ at 25 °C. 35% increase with 0.5 vol.% for TiO ₂ at 25 °C. | - | - | 36 | | Esfe et al. (2015) | Transient hot wire | An ambient temperature | 7% increase with 1 vol.% at an ambient temperature | 7% increase with 1 vol.% at an ambient temperature | - | - | 37 | | Afrand et al. (2016) | Transient hot wire | 20–55 °C | 89% increase with 3 vol.% at 55 °C. | - | - | - | 38 | | Megatif et al. (2016) | The transient hot wire, a viscometer | 25–40 °C | 20% increase with 0.2 wt.% at 25 °C. | 6% increase with 0.2 wt.% at 25 °C. | 1% increase with 0.2 wt.% at 25 °C. | 2% decrease with 0.2 wt.% at 25 °C. | 39 | | Said
(2016) | The transient hot wire, the Brookfield viscometer (DV-II+Pro Programmable Viscometer), heat flux-type differential scanning calorimeter | 20–60 °C | 62% increase with 0.5 vol.% at 60 °C. | 100% increase with 0.5 vol.% at 60 °C. | - | 40% decrease with 0.5 vol.% at 20 °C. | 40 | Table 2. An outline of previous studies on thermophysical properties of nanofluids (continued) | Researcher | Measurement methods | Temperature range | k enhancement (%) | μ enhancement
(%) | ρ enhancement
(%) | C _p enhancement (%) | Reference | |------------------------------------|--|---------------------|--|---|---|--------------------------------|-----------| | Sundar et al.
(2016) | The transient hot
wire, A&D-vibro
viscometer | 20–60 °C | 23% increase with 1 vol.% at 60 °C. | 30 % increase with 1 vol.% at 20 °C. | - | - | 41 | | Huminic et al. (2017) | The transient hot wire | 20–50 °C | 18% increase with 1 wt.% at 50 °C. | 40% increase with 1 wt.% at 20 °C. | - | - | 42 | | Bouguerra et al.
(2018) | THW (The transient
hot wire)-L1 liquid
thermal conductivity
system, a stress
controlled rheometer
(TA HR-2) | 25 °C | 23% increase with 2 vol% at 25 °C. | 50% increase with 2 vol.% at 25 °C. | - | - | 43 | | Gao et al.
(2018) | The transient hot wire | -20-50 °C | 7% increase with 0.15 vol.% at 40 °C. | - | - | - | 44 | | Heyhat and
Irannezhad
(2018) | The transient hot wire | 25-55 °C | 6%, 7.2%, 27% increase for Ag, SiC, and GO respectively, at temperature range between 25 °C and 55 °C. | - | - | - | 45 | | Liu et al.
(2005) | Modified transient
hot wire | Room
temperature | 30.3% increase with 2 vol.% at room temperature. | - | - | 1 | 46 | | Chopkar et al.
(2006) | The transient hot wire | Room
temperature | 27% increase with 2.5 vol.% at room temperature. | - | - | - | 47 | | Chen et al. (2007) | The transient hot
wire, Bolin CVO
rheometer | 20–60 °C | 15% increase with
1.8 vol.% at 40 °C | 23% increase with 1.8 vol.% | - | - | 48 | | Yu et al.
(2009) | Transient short hot
wire, LV DV-II
Brookfield
viscometer | 10–60 °C | 27% increase with 5 vol.% at 30 °C | | - | - | 49 | | Moosavi et al.
(2010) | The transient hot
wire, Ostwald
viscometer | 10-50 °C | 10.5% increase with 3 vol.% at 25 °C. | 27% increase with 0.6 vol.% for ethylene glycol base fluids at 25 °C. | - | 1 | 50 | | Paul et al.
(2011) | The transient hot wire | 30-70 °C | 103% increase with 0.1 vol.% at 70 °C. | - | - | - | 51 | | Yu et al.
(2011) | The transient short
hot wire | 10-60 °C | 86% increase with 5 vol.% at 60°C | - | - | - | 52 | | Yu et al.
(2011a) | The transient short
hot wire, a
viscometer (LV DV-
II+ Brookfield
Programmable
Viscometer) | 10-60 °C | 39% and 40% increase for ethylene glycol and propylene glycol base fluids, respectively, with 10 vol.% at 60 °C. | 138% and 123% increase for ethylene glycol and propylene glycol base fluids, respectively, with 9 vol.% at 20 °C. | - | - | 53 | | Gallego et al.
(2014) | The transient hot
wire, Schott
rotational
viscometer, vibrating
tube densimeter | 10-70 °C | 45% increase with 6.9 vol.% at 70°C | 38% increase with 4.7
vol.% at 10 °C | 0.9-4% increase within volume concentration range from 0.6 to 3 for the temperature range of 10 °C to 70 °C | - | 54 | | Akilu et al.
(2017) | The transient hot
wire, rotational
rheometer | 25-60 °C | 17% increase with 2 vol.% at 60°C | 80% increase with 2 vol.% at 40°C | - | - | 55 | | Zyla
(2017) | The transient hot
wire,
HAAKEMARS2
rheometer | Room
temperature | 33% increase with 7.2 vol.% at 25°C | 81% increase with 7.2 vol.% at 25°C | - | - | 56 | | Zyla and Fal
(2017) | The transient hot
wire,
HAAKEMARS2
rheometer | 25 °C | 3% increase with 2.6 vol.% at 25°C | 39% increase with 2.6 vol.% at 25°C | - | - | 57 | | Ahmadi et al.
(2018) | - | 10-60 °C | 17% increase with 2 vol.% at 40°C | - | - | - | 58 | $Table\ 2.\ An\ outline\ of\ previous\ studies\ on\ thermophysical\ properties\ of\ nanofluids\ (\emph{continued})$ | Researcher | Measurement
methods | Temperature
range | k enhancement (%) | μ enhancement
(%) | ρ enhancement
(%) | C _p enhancement (%) | Reference |
-----------------------------------|---|----------------------|---|--|---|--|-----------| | Keyvani et al.
(2018) | The transient hot wire | 25-50 °C | 22% increase with 2.5 vol.% at 50°C. | - | - | - | 59 | | Namburu et al.
(2007) | LV DV-II
Brookfield
programmable
viscometer | -35–50 °C | - | 4.6% increase with 6.12 vol.% at -30°C. | - | - | 60 | | Sahooli and
Sabbaghi
(2013) | The transient hot wire | 20-95 °C | 66% increase with 0.045 wt.% at 70°C | - | - | - | 61 | | Elias et al.
(2014) | The transient hot wire, a Brookfield programmable viscometer (LVDV- III ultra), portable density meter, differential scanning calorimeter | 10−50 °C | 8% increase with 1 vol.% at 50°C. | 151% increase with 1 vol.% at 50°C. | 3% increase with 1 vol.% at 50°C | 11% decrease with
1 vol.% at 50°C | 62 | | Sundar et al.
(2014) | The transient hot
wire, AR-1000
rheometer | 20–60 °C | 32%, 31% and 27% increase for 20:80, 40:60 and 60:40 ethylene glycol-water base fluids with 1.5 vol.% at 60 °C, respectively. | 37%, 175% and 158% increase for 20:80, 40:60 and 60:40 ethylene glycol-water base fluids with 1.5 vol.% at 0 °C, respectively. | 4% increase for 20:80, 40:60 and 60:40 ethylene glycol-water base fluids with 1.5 vol.% at 20 °C. | 1% decrease for
20:80, 40:60 and
60:40 ethylene
glycol-water base
fluids with 1.5 vol.%
at 20 °C. | 63 | | Kole and Dey
(2011) | Brookfield
programmable
viscometer (model:
LVDV-II-Pro) | 10–80 °C | - | Nearly 200% increase with 1.5 vol.% at 0 °C. | - | - | 64 | | Dudda and Shin
(2013) | Modulated
differential scanning
calorimeter (MDSC) | 150-450 °C | - | - | - | 8%, 12% and 19% increase for 5 nm, 10 nm and 60 nm, respectively. | 65 | | Lu and Huang
(2013) | Differential
scanning calorimetry
(DSC, Model Q20,
TA Instrument,
and Model 7020 of
EXSTAR) | 290–335 °C | - | - | - | 14% decrease with 4.6 vol.% at 335 °C. | 66 | | Moghaddam et al. (2013) | Brookfield
viscometer (LV DV-
II + Pro EXTRA | 20–60 °C | - | 401.49% increase with 2 mass fractions% at 20 °C. | - | - | 67 | | Rashin and
Hemalatha
(2013) | Brook Field LVDVE
viscometer | 35–55 °C | - | 27.6% increase with 2.5 wt.% at shear rate of 3.67 s ⁻¹ at 35°C. | - | - | 68 | | Tiznobaik and
Shin
(2013) | MDSC | 150–500 °C | - | - | - | The average enhancements of specific heat capacity are 23–28% in the solid phase and 22–26% in the liquid phase, respectively. | 69 | | Manikandan et al.
(2014) | Rotational
viscometer (LVDV-
II+Pro, Brookfield
Engineering) | 29–140 °C | 41% increase with 2 vol.% at 10°C | 23% increase with 1 vol.% at 140°C. | - | - | 70 | | Sang and Liu
(2017) | Simultaneous
Thermal Analyzer
(STA-449F3,
NETZSCH) | 500–540 °C | - | - | - | 79.9–113.7%,
50.6–73.9%, 31.1–
56.5% and 50.6–
66.5% increase for
SiO ₂ , CuO, TiO ₂ ,
Al ₂ O ₃ in the range of
500–540 °C,
respectively. | 71 | Masuda et al. [2] reported an experimental study on various water-based nanofluids containing Al_2O_3 (13 nm), SiO_2 (12 nm) and TiO_2 (27 nm). The maximum enhancement in thermal conductivity of 32% and the maximum enhancement of viscosity of 245% with 4.3% particle volume concentration were observed for Al_2O_3 -water mixture at 32 °C and 72 °C, respectively. Wang et al. [3] studied thermal conductivity and viscosity of Al_2O_3 (28 nm) and CuO (23 nm) nanoparticles dispersed in water, vacuum pump fluid, engine oil, and ethylene glycol. They found that the thermal conductivity of nanoparticle–fluid mixtures increased with increasing volume fraction at room temperature. The maximum thermal conductivity and viscosity enhancement were 55% and 85% for CuO-ethylene glycol mixture with 15% volume concentration and Al_2O_3 water-mixture with 5% volume concentration at room temperature, respectively. Murshed et al. [6] investigated effect of the shape of TiO_2 nanoparticles containing spherical (15 nm) and rod-shaped ($\emptyset10$ nm×40 nm) on the augmentation of the thermal conductivity of water-based nanofluids using the transient hot-wire method. They showed that the enhancement of thermal conductivity was near to 33% and 30% for rod and spherical shapes particles with 5% volume fraction at room temperature, respectively. Godson et al. [20] considered the influence of volume concentration and temperature on thermal conductivity and viscosity for silver (60 nm) - water nanofluid. They observed that the thermal conductivity increased with the increase in temperature and particle concentrations whereas the viscosity decreased with the increase in temperature and increased with the increase in particle concentrations. They also concluded that thermophoresis played a vital role in the enhancement of thermal conductivity rather than Brownian motion. The maximum thermal conductivity and viscosity enhancement of 129% and 44% were observed 0.9% of volume concentration at 90 °C, respectively. Halelfadl et al. [29] considered the influence of particle volume fraction varying between 0.0055% and 0.55% and temperature range 0 to 40 °C on viscosity for water-based nanofluids containing carbon nanotubes (CNT) with large aspect ratio using a stress-controlled rheometer. They found that the viscosity of the nanofluid increased with increasing volume fraction and it was 6 times higher than the viscosity of the base fluid for nanoparticles volume fraction of 0.55%. The nanofluids were shown to behave as a shear thinning material at high particle content due to the shear viscosity decreasing when the shear rate increasing, but at lower particle content, the nanofluids behaved in Newtonian manner. It was also reported that the viscosity of nanofluids decreased with increasing temperature, whereas the relative viscosity of nanofluids at high shear rate was independent of temperature. Besides the thermal conductivity and viscosity of nanofluids, other thermophysical properties of specific heat and density should be evaluated. Specific heat which is defined as ratio of the quantity of heat required to raise the system temperature by one degree, influences the heat transfer rate of nanofluids. Said et al. [40] measured thermal conductivity, viscosity, and specific heat of water based nanofluids containing singlewalled carbon nanotubes (SWCNTs) with diameter of 1-2 nm and length of 500 nm by using transient hot wire method, the Brookfield viscometer and a heat flux-type differential scanning calorimeter for a temperature range of 20-60 °C and 0.1, 0.25 and 0.5% volume fractions. The results indicated that the thermal conductivity and viscosity increased but the specific heat decreased with the increase of volume concentrations. However, the thermal conductivity increased but the viscosity and specific heat reduced with rising temperature. The maximum enhancement of the thermal conductivity and viscosity were 62% and 100% for 0.5 volume concentration at 60 °C, respectively. The maximum reduction in the specific heat was 40% for 0.5 volume concentration at 20 °C. Paul et al. [51] evaluated the thermal conductivity of mechanically alloyed $Al_{95}Zn_{05}$ nanoparticle (10–30 nm) dispersed in ethylene glycol with volume concentrations varied in the range 0.01–0.10% for a temperature range of 30 to 70 °C. They reported that rising temperature and volume fraction increased thermal conductivity of nanofluids but decreased with the increase in crystallite size of the particles. The highest thermal conductivity of 103% was obtained with 0.1 volume fraction at 70 °C. Moreover, Sundar et al. [63] studied thermal conductivity, viscosity, density and specific heat of Al₂O₃ nanofluids using different base fluids such as 20:80%, 40:60% and 60:40% by weight of ethylene glycol (EG) and water (W) mixtures for volume concentrations between 0.3% and 1.5% in the temperature range 20 °C and 60 °C. It was found that thermal conductivity and viscosity of nanofluids increased with increase of volume concentrations, but thermal conductivity of nanofluids increased and viscosity of nanofluids decreased with increase of temperatures. Among all the nanofluids, maximum thermal conductivity enhancement of 32.26% was observed for 20:80% EG/W nanofluid at 60 °C and the maximum viscosity enhancement of 158% was observed for 60:40% EG/W nanofluid at 0 °C in the volume concentration of 1.5%. Similar to Said et al. [40], Sundar et al. [64] observed that the density and specific heat of nanofluids increased and reduced, respectively, with an increase in particle loadings at 20 °C. The maximum enhancement of density and the maximum reduction of specific heat were 4% and 1%, respectively, for all EG-W mixtures with 1.5% volume fraction at 20 °C. Dudda and Shin [65] observed the effect of nanoparticle size on the specific heat capacity of SiO_2 (5, 10, 30, and 60 nm)-NaNO₃-KNO₃ (60:40) nanofluids at 1% concentration by weight in at temperature range between 150 and 450 °C. The specific heat of nanofluids was measured by using a modulated differential scanning calorimeter for both solid and liquid states. They reported that the average enhancement of specific heat capacity of nanofluids were 3-10% in the solid phase and 8-24% in the liquid phase, respectively. ### IV. CONCLUSION In
this paper, previous experimental studies on the preparation, stability and thermophysical properties of nanofluids have been comprehensively reviewed. The main conclusions obtained from experimental results for the referred data ranges are as follows: - Increasing the stability of nanoparticles in the base fluids is a key point to improve thermophysical properties of nanofluids. - The maximum thermal conductivity and viscosity enhancement of 129% and 510% were obtained with silver-water [20] and CNT-water [29] nanofluids at 90 °C and 10 °C respectively. - The maximum density enhancement of 4% was obtained with ethylene glycol based ZnO [54] and ethylene glycol-water (20:80, 40:60 and 60:40 by weight) based Al₂O₃ [63] nanofluids. - The maximum specific heat enhancement of 116.8% was obtained using ternary carbonates nanofluids of K₂CO₃-Li₂CO₃-Na₂CO₃ (4:4:2 mass ratio) with SiO₂ nano particles at 540 °C [71]. The maximum specific heat reduction of 14% was obtained with the molten salt-based alumina nanofluid at 335 °C [66]. - The data on density and specific heat of nanofluids are insufficient. - Obtaining optimum enhancement of thermophysical properties depends on many factors including the base fluid type, nanoparticles type, size, shape and concentration, the preparation process, the stability of nanofluids and temperature. Due to the interaction between thermophysical properties of nanofluids, further experimental research is necessary. Developing new correlations for predicting thermophysical properties of nanofluids by using the experimental data collected in this paper is the subject of an ongoing study. The common functional relationships between the thermophysical properties independent of the preparation methodology, type of the nanoparticles and their sizes - shapes seem to be the first problem to be solved. ### REFERENCES - [1] S. Choi. Enhancing thermal conductivity of fluids with nanoparticles. FED 231, 99–103, 1995. - [2] H. Masuda, A. Ebata, K. Teramae and N. Hishinuma. Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles (Dispersion of y-A12O3, SiO2, and TiO2 ultra-fine particles). Netsu Bussei (in Japanese) 4, 227–233, 1993. - [3] X. Wang, X. Xu and S. U. S Choi. Thermal conductivity of nanoparticles-fluid mixture. J Thermophys Heat Transf., 13(4):474– 80, 1999. - [4] N. Putra, W. Roetzel and S. K. Das, Heat Mass Transfer 39, 775 2003. - [5] D. S. Wen and Y. L. Ding. Experimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions. *Int. J. Heat Mass Transfer*, 47, 5181-5188 2004. - [6] S. M. S. Murshed, K. C. Leong and C. Yang. Enhanced thermal conductivity of TiO2-water based nanofluids. *Int J Therm Sci*, 44(4):367–373, 2005. - [7] Y. Ding, H. Alias, D. Wen and R. A. Williams. Heat transfer of aqueous suspensions of carbon nanotubes (CNT nanofluids). Int J Heat Mass Transf, 49:240–250, 2006. - [8] Y. J. Hwang, Y. C. Ahn, H. S. Shin, C. G. Lee, G. T. Kim, H. S. Park and J. K. Lee, Investigation on characteristics of thermal conductivity enhancement of nanofluids, *Curr. Appl. Phys.*, 6, 1068–1071, 2006. - [9] Y. He, Y. Jin, H. Chen, Y. Ding, D. Cang and H. Lu, Heat transfer and flow behavior of aqueous suspensions of TiO2 nanoparticles (nanofluids) flowing upward through a vertical pipe, *International Journal of Heat and Mass Transfer*, 50, 2272–2281, 2007. - [10] Y. Hwang , J. K. Lee, C. H. Lee, Y. M. Jung, S. I. Cheonga, C. G. Lee, B. C. Ku and S. P. Jang. Stability and thermal conductivity characteristics of nanofluids. *Thermochim Acta*, 455, 70-74, 2007. - [11] X. Zhang, H. Gu and M. Fujii, Effective thermal conductivity and thermal diffusivity of nanofluids containing spherical and cylindrical nanoparticles, *Experimental Thermal and Fluid Science*, 31, 593–599, 2007. - [12] X. F. Li, D. S. Zhu, X. J. Wang, N. Wang, J. W. Gao and H. Li. Thermal conductivity enhancement dependent pH and chemical surfactant for Cu- H2O nanofluids. *Thermochim Acta*, 469(1):98–103, 2008. - [13] S. M. S. Murshed, K. C. Leong and C. Yang. Investigations of thermal conductivity and viscosity of nanofluids. *International Journal of Thermal Sciences*, 47 (5), 560–568, 2008. - [14] C. T. Nguyen, F. Desgranges, N. Galanis, G. Roy, T. Maré, S. Boucher and H. A. Mintsa. Viscosity data for Al₂O₃—water nanofluid—hysteresis: is heat transfer enhancement using nanofluids reliable?. *Int J Therm Sci*, 47(2):103–111, 2008. - [15] W. Duangthongsuk and S. Wongwises. Measurement of temperature-dependent thermal conductivity and viscosity of TiO₂-water nanofluids. *Exp Therm Fluid Sci*, 33(4):706–714, 2009. [16] H.A. Mintsa, G. Roy, C. T. Nguyen and D. Doucetet. New - [16] H.A. Mintsa, G. Roy, C. T. Nguyen and D. Doucetet. New temperature dependent thermal conductivity data for water-based nanofluids. *Int. J. Therm. Sci.*, vol. 48, no. 2, pp. 363-371, 2009. - [17] D. Zhu, X. Li, N. Wang, X. Wang, J. Gao and H. Li. Dispersion behaviour and thermal conductivity characteristics of Al2O3–H2O nanofluids. *Curr Appl Phys*, 9(1):131–9, 2009. - [18] M. P. Beck, Y. Yuan, P. Warrier and A. S. Teja. The thermal conductivity of alumina nanofluids in water, ethylene glycol, and ethylene glycol + water mixtures. *J Nanopart Res*, 12:1469–1477, 2010. - [19] M. Chandrasekar, S. Suresh and A. C. Bose. Experimental investigations and theoretical determination of thermal conductivity and viscosity of Al2O3/water nanofluid. *Exp Therm Fluid Sci*, 34(2):210–216, 2010. - [20] L. Godson B. Raja, D. M. Lal and S. Wongwises. Experimental investigation on the thermal conductivity and viscosity of silverdeionized water nanofluid. *Exp Heat Transf*, 23(4):317–32, 2010. - [21] T. P. Teng, Y. H. Hung, T. C. Teng, H. E. Mo and H. G. Hsu. The effect of alumina/water nanofluid particle size on thermal conductivity. *Appl Therm Eng*, 30(14):2213–2218, 2010. - [22] M. Yeganeh, N. Shahtahmasebi, A. Kompany, E. K. Goharshadi A. Youssefi and L. Šiller. Volume fraction and temperature variations of the effective thermal conductivity of nanodiamond fluids in deionized water. *Int J Heat Mass Transf*, 53(15):3186–3192, 2010. - [23] K. S. K. Gandhi, M. Velayutham and S. K. Das. Thirumalachari S. Measurement of thermal and electrical conductivities of graphene nanofluids. *In: Proceedings of the 3rd Micro and Nano Flows Conference*, Thessaloniki, Greece, 22–24, August 2011. - [24] S. Suresh, K. P. Venkitaraj, P. Selvakumar and M. Chandrasekar. Synthesis of Al2O3-Cu/water hybrid nanofluids using two step method and its thermo physical properties. *Colloids Surf A: Physicochem Eng Asp*, 388(1):41–8, 2011. - [25] B. Aladag, S. Halelfadl, N. Doner, T. Maré, S. Duret and P. Estellé. Experimental investigations of the viscosity of nanofluids at low temperatures. *Appl Energy*, 97:876–80, 2012. - [26] Y. H. Hung and W. C. Chou. Chitosan for suspension performance and viscosity of MWCNTs. *International Journal of Chemical Engineering and Applications*, 3(5), 343–346, 2012. - [27] K. S. Suganthi and K. S. Rajan. Temperature induced changes in ZnO water nanofluid: zeta potential, size distribution and viscosity profiles. *Int J Heat Mass Transf*, 55(25):7969–80, 2012. - [28] T. Yiamsawasd, A.S. Dalkilic and S. Wongwises. Measurement of the thermal conductivity of titania and alumina nanofluids. *Therm. Acta*, 545, 48–56, (2012). - [29] S. Halelfadl, P. Estellé, B. Aladag N. Doner and T. Maré. Viscosity of carbon nanotubes water-based nanofluids: influence of concentration and temperature. *Int J Therm Sci*, 71:111–117, 2013. - [30] J. B. Mena, A. A. Ubices de Moraes, Y. R. Benito, G. Ribatski and J. A. R. Parise Extrapolation of Al₂O₃-water nanofluid viscosity for temperatures and volume concentrations beyond the range of validity of existing correlations. *Appl Therm Eng*, 51(1):1092–1097, 2013. - [31] M. C. S. Reddy and V. V. Rao. Experimental studies on thermal conductivity of blends of ethylene glycol-water-based TiO₂ nanofluids. *Int Commun Heat Mass Transf*, 46:31–36, 2013. - [32] L. S. Sundar, M. K. Singh and A. C. M. Sousa. Investigation of thermal conductivity and viscosity of Fe₃O₄ nanofluid for heat transfer applications. *Int Commun Heat Mass Transf*, 44:7–14, 2013. - [33] M. H. Esfe, S. Saedodin and M. Mahmoodi. Experimental studies on the convective heat transfer performance and thermophysical properties of MgO-water nanofluid under turbulent flow. Exp Therm Fluid Sci, 52:68–78, 2014. - [34] M. Ghanbarpour, E. B. Haghigi and R. Khodabandeh. Thermal properties and rheological behaviour of water based Al₂O₃ nanofluid as a heat transfer fluid. *Experimental Therm. Fluid Sci.*, 53, 227-235, 2014. - [35] Z. Hajjar, A. M. Rashidi and A. Ghozatloo. Enhanced thermal conductivities of graphene oxide nanofluids. *Int Commun Heat Mass Transf*, 57:128–131, 2014. - [36] Z. Said, R. Saidur, A. Hepbasli and N. A. Rahim. New thermophysical properties of water based TiO2 nanofluid—the hysteresis phenomenon revisited. *Int Commun Heat Mass Transf*, 58:85–95, 2014. - [37] M. H. Esfe, S. Saedodin, S. Wongwises and D. Toghraie. An experimental study on the effect of diameter on thermal conductivity and dynamic viscosity of Fe/water nanofluids. *Journal of Thermal Analysis and Calorimetry*, 119(3), 1817–1824, 2015. - [38] M. Afrand, D. Toghraie and N. Experimental study on thermal conductivity of water-based Fe₃O₄ nanofluid: development of a new correlation and modeled by artificial neural network. *Int Commun Heat Mass Transf*, 75:262–269, 2016. - [39] L. Megatif, A. Ghozatloo, A. Arimi and M. Shariati-Niasar Investigation of laminar convective heat transfer of a novel TiO₂ carbon nanotube hybrid water-based nanofluid. *Exp Heat Transf*, 29(1):124–38, 2016. - [40] Z. Said. Thermophysical and optical properties of SWCNTs nanofluids. *International Communications in Heat and Mass Transfer*, 78, 207–213, 2016. - [41] L. S. Sundar, M. J. Hortiguela, M. K. Singh, A. C. M. Sousa.
Thermal conductivity and viscosity of water based nanodiamond (ND) nanofluids: an experimental study. *Int Commun Heat Mass Transf*, 76, 245–255, 2016. - [42] G. Huminic, A. Huminic, C. Fleaca, F. Dumitracheb and I. Morjan. Thermo-physical properties of water based SiC nanofluids for heat transfer applications. *International Communications in Heat and Mass Transfer*, 84, 94-101, 2017. - [43] N. Bouguerra, S. Poncet and S. Elkoun. Dispersion regimes in alumina/water-based nanofluids: Simultaneous measurements of thermal conductivity and dynamic viscosity. *International Communications in Heat and Mass Transfer*, 92, 51-55, 2018. - [44] Y. Gao, H. Wang, A. P. Sasmito and A. S. Mujumdar. Measurement and modeling of thermal conductivity of grapheme nanoplatelet water and ethylene glycol base nanofluids. *International Journal of Heat* and Mass Transfer, 123, 97-109, 2018. - [45] M. M. Heyhat and A. Irannezhad. Experimental investigation on the competition between enhancement of electrical and thermal conductivities in water-based nanofluids. *Journal of Molecular Liquids*, 268, 169-175, 2018. - [46] M. S. Liu, M. C. C. Lin, I. T. Huang and C. C. Wang. Enhancement of thermal conductivity with carbon nanotube for nanofluids. *Int Commun Heat Mass Transf*; 32(9):1202–1210, 2005. - [47] M. Chopkar, P. K. Das and I. Manna. Synthesis and characterization of nanofluid for advanced heat transfer applications. *Scripta Materialia*, 55(6):549–552, 2006. - [48] H. Chen, Y. Ding, Y. He and C. Tan. Rheological behavior of ethylene glycol based titania nanofluids. *Chem. Phys. Lett.*, 444, 333-337, 2007. - [49] W. Yu, H. Xie, L. Chen and Y. Li. Investigation of thermal conductivity and viscosity of ethylene glycol based ZnO nanofluid. *Thermochim Acta*, 491(1):92–96, 2009. - [50] M. Moosavi, E. K. Goharshadi, A. Youssefi. Fabrication, characterization and measurement of some physicochemical properties of ZnO nanofluids. *Int J Heat Fluid Flow*, 31: 599–605, 2010. - [51] G. Paul, J. Philip, B. Raj, P. K. Das and I. Manna. Synthesis, characterization, and thermal property measurement of nano-Al $_{95}$ Zn $_{05}$ - dispersed nanofluid prepared by a twostep process. *Int J Heat Mass Transf* 54(15):3783–3788, 2011. - [52] W. Yu, H. Xie, X. Wang and X. Wang. Significant thermal conductivity enhancement for nanofluids containing graphene nanosheets. *Phys Lett A*; 375(10):1323–1328, 2011. - [53] W. Yu, H. Xie, Y. Li, and L. Chen. Experimental investigation on thermal conductivity and viscosity of aluminum nitride nanofluid. *Particuology*, 9(2):187–191, 2011a. - [54] M. J. Pastoriza-Gallego, L. Lugo, D. Cabaleiro, J. L. Legido and M. M. Piñeiro. Thermophysical profile of ethylene glycol-based ZnO nanofluids. J. Chem. Thermodynamics, 73:23–30, 2014. - [55] S. Akilu, A. T. Baheta and K.V. Sharma. Experimental measurements of thermal conductivity and viscosity of ethylene glycol-based hybrid nanofluid with TiO₂-CuO/C inclusions. *Journal of Molecular Liquids*, 246, 396-405, 2017. - [56] G. Zyla. Viscosity and thermal conductivity of MgO–EG nanofluids Experimental results and theoretical models predictions. *J Therm Anal Calorim*, 129:171–180, 2017. - [57] G. Zyla and J. Fal. Viscosity, thermal and electrical conductivity of silicondioxide–ethylene glycol transparent nanofluids: An experimental studies. *Thermochimica Acta*, 650, 106–113, 2017. - [58] M. A. Ahmadi, M. H. Ahmadi, M. F. Alavi, M. R. Nazemzadegan, R. Ghasempourd and S. Shamshirband. Determination of thermal conductivity ratio of CuO/ethylene glycol nanofluid by connectionist approach. *Journal of the Taiwan Institute of Chemical Engineers*, 91, 383-395, 2018. - [59] M. Keyvani, M. Afrand, D. Toghraie and M. Reiszadeh. An experimental study on the thermal conductivity of cerium oxide/ethylene glycol nanofluid: developing a new correlation. *Journal of Molecular Liquids*, 266, 211–217, 2018. - [60] P. K. Namburu, D. P. Kulkarni, D. Misra and D. K. Das. Viscosity of copper oxide nanoparticles dispersed in ethylene glycol and water mixture. *Exp Therm Fluid Sci*, 32(2):397–402, 2007. - [61] M. Sahooli and S. Sabbaghi. Investigation of thermal properties of CuO nanoparticles on the ethylene glycol-water mixture. *Mater Lett*, 93:254–257, 2013. - [62] M. M. Elias, I. M. Mahbubul, R. Saidur, M. R. Sohel, I.M. Shahrul, S. S. Khaleduzzaman and S. Sadeghipouret. Experimental investigation on the thermo-physical properties of Al₂O₃ nanoparticles suspended in car radiator coolant. *Int Commun Heat Mass Transf*, 54:48–53, 2014. - [63] L. S. Sundar, E. V. Ramana, M. K. Singh and A. C. M. Sousa. Thermal conductivity and viscosity of stabilized ethylene glycol and water mixture Al₂O₃ nanofluids for heat transfer applications: an experimental study. *Int Commun Heat Mass Transf*; 56:86–95, 2014. - [64] M. Kole and T. K. Dey. Effect of aggregation on the viscosity of copper oxide–gear oil nanofluids. *Int J Therm Sci*, 50(9):1741–1747, 2011. - [65] B. Dudda and D. Shin. Effect of nanoparticle dispersion on specific heat capacity of a binary nitrate salt eutectic for concentrated solar power applications. *Int. J. Therm. Sci.*, 69, 37–42, 2013. - [66] M. C. Lu and C. H. Huang. Specific heat capacity of molten salt-based alumina nanofluid. *Nanoscale Res. Lett.*, 8:292, 2013. - [67] M. B. Moghaddam, E. K. Goharshadi, M. H. Entezari and P. Nancarrow. Preparation, characterization, and rheological properties of graphene–glycerol nanofluids. *Chem Eng J*, 231:365–372, 2013. - [68] M. N. Rashin and J. Hemalatha. Viscosity studies on novel copper oxide–coconut oil nanofluid. Exp Therm Fluid Sci, 48:67–72, 2013. - [69] H. Tiznobaik and D. Shin. Enhanced specific heat capacity of hightemperature molten salt-based nanofluids. *Int. J. Heat Mass Transf.*, 57, 542–548, 2013. - [70] S. Manikandan, A. Shylaja and K. S. Rajan. Thermo-physical properties of engineered dispersions of nano-sand in propylene glycol. *Colloids Surf A: Physicochem Eng Asp*, 449:8–18, 2014. - [71] L. Sang and T. Liu. The enhanced specific heat capacity of ternary carbonates nanofluids with different nanoparticles. *Sol. Energy Mater. Sol. Cells*, 169, 297–303, 2017.