Estimation of Electricity Consumption by Regression and Artificial Neural Networks Approaches
Ümmü Gülsüm Eraslan1*, Figen Balo2, Büşra Çetin3, Ukbe Ü. Uçar4
1Fırat University, Elazığ, Turkey
2Fırat University, Elazığ, Turkey
3Fırat University, Elazığ, Turkey
4Fırat University, Elazığ, Turkey
* Corresponding author: gulsumeraslan7@gmail.com
Presented at the International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT2017), Tokat, Turkey, Dec 02, 2017
SETSCI Conference Proceedings, 2017, 1, Page (s): 235-238
Published Date: 08 December 2017
Aim of the study: It is important to be able to plan the production transmission and distribution necessary for uninterrupted electricity and to use the electricity more efficiently and to make demand forecasts. For this reason, it is aimed to estimate the electric energy demand for Elazığ province for 10 years. Material and Methods: In this study, electricity consumption for the years 20017-2026 was estimated by using artificial neural networks and multiple regression methods considering the data covering the years 2002-2016 for Elazığ province. In the application MATLAB program is used. Results: The results obtained with the artificial neural networks method are compared with the regression technique and show that artificial neural networks are a better method of predicting electrical energy consumption.
Keywords - Electric Energy Estimation, Regression Analysis, Artificial Neural Networks
[1] Oğurlu, Hayri, (2011) Matematiksel Modelleme Kullanarak Türkiye’nin Uzun dönem Yük Tahmini
[2] Kankal, M., Akpınar, A., Kömürcü, M.İ. ve Özşahin, T.Ş., “Modeling and forecasting of Turkey’s energy consumption using socioeconomic and demographic variables“, Applied Energy, Cilt 88, No 5, 1927-1939, 2011.
[3] Sözen, A. ve Arcaklıoğlu, E.,” Prediction of net energy consumption based on economic indicators (GNP and GDP) in Turkey”, Energy Policy, Cilt 35, No 10, 4981-4992, 2007.
[4] Sözen, A., Arcaklıoğlu, E. ve Özkaymak, M., “Turkey’s net energy consumption”, Applied Energy, Cilt 81, No 2, 209-221, 2005.
[5] Geem, Z.W. ve Roper, W.E., “Energy demand estimation of South Korea using artificial neural network”, Energy Policy, Cilt 37, No 10, 4049-4054, 2009.
[6] Ekonomou, L., “Greek long-term energyconsumption prediction using artificial neural networks”, Energy, 35 : 512-517 (2010).
[7] Tankut Yalçınöz, Erdem Saadettin, Eminoğlu Ulaş, Yapay Sinir Ağları ile Niğde Bölgesinin Elektrik Yük Tahmini
[8] Balcı H.Esener Işıklı İ. ve Kurban M., “Regresyon Analizi Kullanarak Kısa Dönem Yük Tahmini”, ELECO '20122, Bursa
[9] Yalçınöz T., Karadeniz Y., Yücel İ., “Niğde Bölgesi için Elektrik Yük Tahmini”, ELECO’2000,sayfa 8-12, Bursa, 2000.
[10] Kutner, M. H., Nachtsheim, C. J, Neter, J., Li, W. (2005), Applied Linear Statistical Models, Fifth Edition, The McGraw-Hill/Irwin Series, p. 1420.
[11]Kaysal K, “Doğrusal ve doğrusal olmayan yük tahmini algoritmalarının Güney ilçesi için performanslarının karşılaştırılması.” Yüksek Lisans Tezi, Afyon Kocatepe Üniversitesi, Fen Bilimleri Enstitüsü, Afyon, 2013.
[12]Hamzaçebi C., Kutay F. 2004 “Yapay Sinir Ağları ile Türkiye Elektrik Enerjisi Tüketiminin 2010 Yılına Kadar Tahmini”, Mühendislik Mimarlık Fakültesi Dergisi, Gazi Üniversitesi, Endüstri Mühendisliği Bölümü, Ankara, 227-233
[13] Kalogirou, S. A., "Applications of artificialneuralnetworks in energysystems." Energy Conversion and Management 40.10: 1073-1087. 1999.
![]() |
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |