Open Access

A Magnetic Micromanipulator and its Control

Günyaz Ablay1*, Mustafa Böyük2, Yakup Eroğlu3
1Abdullah Gül University  , Kayseri, Turkey
2Abdullah Gül University  , Kayseri, Turkey
3Abdullah Gül University  , Kayseri, Turkey
* Corresponding author: gunyaz.ablay@agu.edu.tr

Presented at the International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA2019), Ürgüp, Turkey, Jul 05, 2019

SETSCI Conference Proceedings, 2019, 8, Page (s): 50-54 , https://doi.org/10.36287/setsci.4.5.012

Published Date: 12 October 2019

Abstract – A magnetic micromanipulator can be developed with the ability to produce the magnetic force required for different applications, and can manipulate micron-sized particles. This study was carried out on the design and application of an electromagnetic actuator based magnetic micromanipulator which consists of feedback control structures for effective and automatic micro-particle manipulation, and provides two-dimensional manipulation on the horizontal axis. In the design of the electromagnet, the applied control current and the magnet configuration determine the magnetic force and torque values, and therefore there is a need to develop the feedback control mechanism with the appropriate core structures for an optimal, strong and precise design. The magnetic actuators are intended to produce approximately 1 to 25 pN of force on the 8 μm diameter superparamagnetic particle. For this purpose, a configuration consisting of nickel-iron alloy core having 6 mm long cone shaped tip and four electromagnet made from 2000 copper coil has been obtained. The magnetic micromanipulator is modeled by the first principles and is controlled by a suitable feedback control design which linearizes non-linear terms in the model. It is shown by experimental studies that the designed controller stabilizes the closed-loop dynamics of the system, gives a fast transient response and a zero steady-state error. The designed electromagnetic micromanipulator has the capacity to operate in a wide range of fields, especially in biological separation, medicine and biosensor development. Özet –Bir manyetik mikromanipülatör farklı uygulamalar için gerekli manyetik kuvveti üretme kabiliyetine sahip olarak geliştirilebilir ve mikron boyutlu parçacıkları manipüle edebilir. Bu çalışma etkin ve otomatik mikro-parçacık manipülasyonu için geribeslemeli kontrol yapılarından oluşan ve yatay eksende iki boyutlu manipülasyon imkanı sağlayan bir elektromanyetik aktüatör tabanlı manyetik mikromanipülatör tasarımı ve uygulaması üzerine yapılmıştır. Elektromıknatıs tasarımında, uygulanan kontrol akımı ve elektromıknatıs konfigürasyonu manyetik kuvvet ve tork değerlerini belirlemektedir ve bundan dolayı en uygun, kuvvetli ve hassas bir tasarım için uygun nüve yapılarıyla beraber geribeslemeli kontrol mekanizmasının geliştirilmesine ihtiyaç vardır. Manyetik aktüatörlerin, 8 μm çaplı süperparamanyetik parçacık üzerinde yaklaşık olarak 1 ila 25 pN kuvvet üretmesi amaçlanmıştır. Bunun için 6 mm boyundaki koni şekilli uca sahip nikel-demir alaşımlı nüve ve 2000 bakır sarımından yapılmış dört elektromıknatıstan oluşan bir konfigürasyon elde edildi. Manyetik mikromanipülatör, ilk prensipler yoluyla modellendi ve modeldeki lineer olmayan terimleri doğrusallaştıran uygun bir geribeslemeli kontrol tasarımı ile kontrol edildi. Tasarlanan kontrolörün sistemin kapalı çevrimli dinamiğini kararlı hale getirdiği, hızlı geçici rejim yanıtı verdiği ve sıfır kararlı durum hatası verdiği deneysel çalışmalarla gösterilmiştir. Tasarlanan elektromanyetik mikromanipülatör özellikle biyolojik ayrıştırma, tıp ve biyosensör geliştirilmesi gibi alanlarda kullanılabilecek geniş bir kuvvet aralığında çalışabilme kapasitesine sahiptir.

Keywords - Micromanipulator, magnetic force, current control, control, modeling

[1] M. Capitanio and F. S. Pavone, “Interrogating biology with force: single molecule high-resolution measurements with optical tweezers,” Biophys. J., vol. 105, no. 6, pp. 1293–1303, 2013.

[2] P. Polimeno et al., “Optical tweezers and their applications,” Journal of Quantitative Spectroscopy and Radiative Transfer, vol. 218, pp. 131–150, 2018.

[3] K. C. Neuman and A. Nagy, “Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy,” Nature Methods, vol. 5, no. 6, pp. 491–505, 2008.

[4] T. Kodama, T. Osaki, R. Kawano, K. Kamiya, N. Miki, and S. Takeuchi, “Round-tip dielectrophoresis-based tweezers for single micro-object manipulation,” Biosensors and Bioelectronics, vol. 47, pp. 206–212, 2013.

[5] H. Luo, W. Sun, and J. T. Yeow, “Modelling and adaptive dynamic sliding mode control of dielectrophoresis-based micromanipulation,” Transactions of the Institute of Measurement and Control, vol. 40, no. 1, pp. 122–134, 2018.

[6] S. B. Smith, L. Finzi, and C. Bustamante, “Direct mechanical measurements of the elasticity of single DNA molecules by using magnetic beads,” Science, vol. 258, no. 5085, pp. 1122–1126, 1992.

[7] L. Ju and C. Zhu, “Benchmarks of Biomembrane Force Probe Spring Constant Models,” Biophysical Journal, vol. 113, no. 12, pp. 2842–2845, 2017.

[8] R. Fabian, C. Tyson, P. L. Tuma, I. Pegg, and A. Sarkar, “A Horizontal Magnetic Tweezers and Its Use for Studying Single DNA Molecules,” Micromachines, vol. 9, no. 4, pp. 188–200, 2018.

[9] C. Jiang, T. A. Lionberger, D. M. Wiener, and E. Meyhofer, “Electromagnetic tweezers with independent force and torque control,” Rev Sci Instrum, vol. 87, no. 8, p. 084304, 2016.

[10] B. Pelz, G. Žoldák, F. Zeller, M. Zacharias, and M. Rief, “Subnanometre enzyme mechanics probed by single-molecule force spectroscopy,” Nature Communications, vol. 7, no. 10848, pp. 1–9, 2016.

[11] D. N. Fuller et al., “A general method for manipulating DNA sequences from any organism with optical tweezers,” Nucleic Acids Res, vol. 34, no. 2, p. e15, 2006.

[12] M. Li et al., “Atomic force microscopy study of the antigen-antibody binding force on patient cancer cells based on ROR1 fluorescence recognition,” J. Mol. Recognit., vol. 26, no. 9, pp. 432–438, 2013.

[13] F. Kriegel, N. Ermann, and J. Lipfert, “Probing the mechanical properties, conformational changes, and interactions of nucleic acids with magnetic tweezers,” Journal of Structural Biology, vol. 197, no. 1, pp. 26–36, 2017.

[14] I. D. Vlaminck and C. Dekker, “Recent Advances in Magnetic Tweezers,” Annual Review of Biophysics, vol. 41, no. 1, pp. 453–472, 2012.

[15] C. Gosse and V. Croquette, “Magnetic tweezers: micromanipulation and force measurement at the molecular level.,” Biophys J, vol. 82,no. 6, pp. 3314–3329, 2002.

[16] A. Huhle et al., “Camera-based three-dimensional real-time particle tracking at kHz rates and Ångström accuracy,” Nat Commun, vol. 6, no. 5885, pp. 1–8, 2015.

[17] D. Klaue and R. Seidel, “Torsional stiffness of single superparamagnetic microspheres in an external magnetic field,” Phys. Rev. Lett., vol. 102, no. 2, p. 028302, 2009.

[18] T. Strick, J.-F. Allemand, V. Croquette, and D. Bensimon, “Twisting and stretching single DNA molecules,” Progress in Biophysics and Molecular Biology, vol. 74, no. 1, pp. 115–140, 2000.

[19] C. P. McAndrew et al., “Simple horizontal magnetic tweezers for micromanipulation of single DNA molecules and DNA—protein complexes,” BioTechniques, vol. 60, no. 1, pp. 21–27, 2016.

[20] F. W. Schwarz et al., “The helicase-like domains of Type III restriction enzymes trigger long-range diffusion along DNA,” Science, vol. 340, no. 6130, pp. 353–356, 2013.

[21] J. Yan, D. Skoko, and J. F. Marko, “Near-field-magnetic-tweezer manipulation of single DNA molecules,” Phys Rev E Stat Nonlin Soft Matter Phys, vol. 70, no. 1, pp. 011905(1–5), 2004.

[22] F. Gittes and C. F. Schmidt, “Thermal noise limitations on micromechanical experiments,” Eur Biophys J, vol. 27, no. 1, pp. 75–81, 1998.

[23] M. Kim and A. L. Zydney, “Effect of electrostatic, hydrodynamic, and Brownian forces on particle trajectories and sieving in normal flow filtration,” Journal of Colloid and Interface Science, vol. 269, no. 2, pp. 425–431, 2004.

[24] G. Ablay, M. Böyük, and K. İçöz, “Design, modeling, and control of a horizontal magnetic micromanipulator,” Transactions of the Institute of Measurement and Control, vol. 1, no. 1, pp. 1–9, 2019.

0
Citations (Crossref)
5K
Total Views
39
Total Downloads

Licence Creative Commons This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
SETSCI 2025
info@set-science.com
Copyright © 2025 SETECH
Tokat Technology Development Zone Gaziosmanpaşa University Taşlıçiftlik Campus, 60240 TOKAT-TÜRKİYE