Seismic Data Analysis with Deep Learning Models: Methods, Applications, and Future Perspectives
Betül Ağaoğlu1*, İman Askerzade2, Gazi Erkan Bostancı3, İhsan Tolga Medeni4
1Ankara Universtiy, Ankara, Türkiye
2Ankara Universtiy, Ankara, Türkiye
3Ankara Universtiy, Ankara, Türkiye
4Ankara Yıldırım Beyazıt University, Ankara, Türkiye
* Corresponding author: betulagaoglu@hitit.edu.tr
Presented at the 6th International Symposium on Innovations in Scientific Areas (SISA2024), Ankara, Türkiye, Jun 07, 2024
SETSCI Conference Proceedings, 2024, 18, Page (s): 120-124 , https://doi.org/10.36287/setsci.18.1.00120
Published Date: 24 June 2024
Seismic data is a critical source for examining and understanding subsurface structures. It is used in various fields such as oil exploration, geological research, mining, underground infrastructure planning, environmental monitoring, and conservation. The analysis and interpretation of these data are often complex and time-consuming. Deep learning, on the other hand, is recognized for its ability to identify complex patterns in large datasets. Deep learning models can be used to address challenges such as understanding complexity, noise reduction, and feature extraction in seismic data. The role of deep learning methods in seismic data analysis is increasingly significant because these techniques offer the potential to obtain more accurate results and discover new opportunities in seismic interpretation. This contributes to making the seismic interpretation process more efficient and enhancing the understanding of subsurface structures. This study focuses on interpreting seismic data using deep learning methods and examines how deep learning models can be utilized in seismic interpretation. The results of the study demonstrate that deep learning models can effectively address complexity in seismic data and perform automatic feature extraction. These findings highlight the potential of deep learning methods in the field of seismic interpretation and shed light on future research directions.
Keywords - Artificial intelligence; deep learning; seismic data
[1] N. H. Mondol, “Seismic exploration”, Petroleum Geoscience: From Sedimentary Environments to Rock Physics, 427-454, 2015.
[2] R. H. Stolt, “Seismic data mapping and reconstruction”, Geophysics, 67(3), 890-908, 2002.
[3] Z. Aung, I. S. Mikhaylov & Y. T. Aung, “Artificial intelligence methods application in oil industry”, In 2020 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus), pp. 563-567, IEEE, 2020.
[4] S. Li, B. Liu, Y. Ren, Y. Chen, S. Yang, Y. Wang, & P. Jiang, “Deep-learning inversion of seismic data”, arXiv preprint arXiv:1901.07733, 2019.
[5] S. Minaee, Y. Boykov, F. Porikli, A. Plaza, N. Kehtarnavaz & D. Terzopoulos, “Image segmentation using deep learning: A survey”, IEEE transactions on pattern analysis and machine intelligence, 44(7), 3523-3542, 2021.
[6] J. Zou, Y. Han & S.S. So, “Overview of artificial neural networks”, Artificial neural networks: methods and applications, 14-22, 2009.
[7] X. Hao, G. Zhang & S. Ma, “Deep learning. International Journal of Semantic Computing”, 10(03), 417-439, 2016.
[8] S. Aktürk, & K. Serbest, “Nesne Tespiti İçin Derin Öğrenme Kütüphanelerinin İncelenmesi”, Journal of Smart Systems Research, 3(2), 97-119, 2022.
[9] L. Deng, & D. Yu, “Deep learning: methods and applications”, Foundations and trends® in signal processing, 7(3–4), 197-387, 2014.
[10] B. Wang, N. Zhang, W. Lu, & J. Wang, “Deep-learning-based seismic data interpolation: A preliminary result”, Geophysics, 84(1), V11-V20, 2019.
[11] Y. Liu, & S. Fomel, “Seismic data analysis using local time‐frequency decomposition”, Geophysical Prospecting, 61(3), 516-525, 2013.
[12] B. Wang, N. Zhang, W. Lu, & J. Wang, “Deep-learning-based seismic data interpolation: A preliminary result”. Geophysics, 84(1), V11-V20, 2019.
[13] E. B. Helal, O. M. Saad, A. G. Hafez, Y. Chen, & G. M. Dousoky, “Seismic data compression using deep learning”, IEEE Access, 9, 58161-58169, 2021.
[14] N. C. Dutta, “Geopressure prediction using seismic data: Current status and the road ahead”, Geophysics, 67(6), 2012-2041, 2002.
[15] D. R. Cox, A. M. Newton, & M. Huuse, “An introduction to seismic reflection data: Acquisition, processing and interpretation”, In Regional geology and tectonics (pp. 571-603). Elsevier, 2020.
[16] P. Bormann, S. Wendt, & K. Klinge, “Data Analysis and Seismogram Interpretation (draft, under review)”, In New Manual of Seismological Observatory Practice 2 (NMSOP-2), (pp. 1-151). Deutsches GeoForschungsZentrum GFZ, 2013.
[17] J. B. Sangree, & J. M. Widmier, “Interpretation of depositional facies from seismic data”, Geophysics, 44(2), 131-160, 1979.
[18] B. Peters, E. Haber, & J. Granek, “Neural networks for geophysicists and their application to seismic data interpretation”, The Leading Edge, 38(7), 534-540, 2019.
[19] M. Guarido, J. Li, & R. Cova, “Machine learning in geoscience: using deep learning to solve the TGS Salt Identification challenge”, CREWES Research Report 30: 14.1–14.12, 2018.
[20] M. Karchevskiy, I. Ashrapov, & L. Kozinkin, “Automatic salt deposits segmentation: A deep learning approach”, arXiv preprint arXiv:1812.01429, 2018.
[21] A. U. Waldeland, A. C. Jensen, L. J. Gelius & A. H. S. Solberg, “Convolutional neural networks for automated seismic interpretation”, The Leading Edge, 37(7), 529-537, 2018.
[22] B. Liu, H. Jing, J. Li, Y. Li, G. Qu & R. Gu, “Image Segmentation of Salt Deposits Using Deep Convolutional Neural Network”. In 2019 IEEE International Conference on Systems, Man and Cybernetics (SMC) (pp. 3304-3309). IEEE, 2019.
[23] A. Arogunmati, & M. Moocarme, “Automatic Geohazard Detection Using Neural Networks”, In Offshore Technology Conference. OnePetro, 2019.
[24] J. Guo, L. Xu, J. Ding, B. He, S. Sai, & F. Liu, “A deep supervised edge optimization algorithm for salt body segmentation”, IEEE Geoscience and Remote Sensing Letters, 18(10), 1746-1750, 2020.
[25] H. Zhou, S. Xu, G. Ionescu, M. Laomana, & N. Weber, “Salt interpretation with U-SaltNet”, In SEG International Exposition and Annual Meeting. OnePetro, 2020.
[26] Y. Zhao, B. Liu, J. Li, Y. Li, H. Chen, & G. Qu, “Boundary U-Net: A Segmentation Method to Improve Salt Bodies Identification Accuracy”, In International Conference on Frontier Computing (pp. 27-40). Springer, Singapore, 2020.
[27] Y. HajNasser, “MultiResU-Net: Neural Network for Salt Bodies Delineation and QC Manual Interpretation,. In Offshore Technology Conference. OnePetro, 2021.
[28] Y. Chung, W. Lu, & X. Tian, “Interactive Segmentation Using Prior Knowledge-Based Distance Map”, In 2021 8th International Conference on Information, Cybernetics, and Computational Social Systems (ICCSS) (pp. 239-244). IEEE, 2021.
[29] T. Konuk, & J. Shragge, “Deep learning for probabilistic salt segmentation using Bayesian inference machines”, In First International Meeting for Applied Geoscience & Energy (pp. 1415-1419). Society of Exploration Geophysicists, 2021.
[30] P. V. Arsha, & P. P. Thulasidharan, “Salt Body Segmentation in Seismic Images using Mask R-CNN”, In 2021 International Conference on Communication, Control and Information Sciences (ICCISc) (Vol. 1, pp. 1-6). IEEE, 2021.
[31] Y. Chung, W. Lu, & X. Tian, “Data Cleansing for Salt Dome Dataset With Noise Robust Network on Segmentation Task”, IEEE Geoscience and Remote Sensing Letters, 19, 1-5, 2022.
[32] H. Zhang, P. Zhu, Z. Liao & Z. Li, “SaltISCG: Interactive Salt Segmentation Method Based on CNN and Graph Cut”, IEEE Transactions on Geoscience and Remote Sensing, 60, 1-14, 2022.
[33] H. Li, Q. Hu, Y. Mao, F. Niu, & C. Liu, “Deep Learning-based Model for Automatic Salt Rock Segmentation”, Rock Mechanics and Rock Engineering, 55(6), 3735-3747, 2022.
[34] Z. Geng, Z. Hu, X. Wu, L. Liang & S. Fomel, “Semisupervised salt segmentation using mean teacher”, Interpretation, 10(3), SE21-SE29, 2022.
[35] O. M. Saad, W. Chen, F. Zhang, L. Yang, X. Zhou, & Y. Chen, “Self-Attention Fully Convolutional DenseNets for Automatic Salt Segmentation”, IEEE Transactions on Neural Networks and Learning Systems, 2022.
[36] R. R. Rochu & N. K. Buddha, “Salt Segment Identification in Seismic Images of Earth Surface using Deep Learning Techniques”, In 2023 Second International Conference on Electronics and Renewable Systems (ICEARS) (pp. 1290-1295). IEEE, 2023.
[37] J. D. Bodapati, R. Sajja & V. Naralasetti “An efficient approach for semantic segmentation of salt domes in seismic images using improved UNET architecture”, Journal of The Institution of Engineers (India): Series B, 104(3), 569-578, 2023.
![]() |
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |