An AI-Driven Drone-Integrated Mobile Photobioreactor System: A Novel Approach to Atmospheric Carbon Sequestration and Oxygen Emission
Betül Güroy1*
1Aquculture Department, Yalova University, Yalova, Turkiye
* Corresponding author: bguroy@yalova.edu.tr
Presented at the International Symposium on AI-Driven Engineering Systems (ISADES2025), Tokat, Turkiye, Jun 19, 2025
SETSCI Conference Proceedings, 2025, 22, Page (s): 136-145 , https://doi.org/10.36287/setsci.22.31.001
Published Date: 10 July 2025
A universally applicable “optimal photobioreactor” design has yet to be established, as the success of such systems varies depending on the algal species used, environmental conditions, and intended applications. Meanwhile, the accelerating pace of climate change necessitates not only passive monitoring of atmospheric carbon but also its active mitigation through biologically driven interventions. In this study, we propose a drone-integrated mobile photobioreactor (m-FBR) concept that utilizes the highly photosynthetically efficient cyanobacterium Synechococcus elongatus PCC 3055, combined with artificial intelligence technologies. The developed system is equipped with GNSS-based positioning, NDIR-based CO₂ sensors, and environmental sensing modules for temperature, light, and humidity, enabling real-time adaptive response to ambient conditions. Route optimization is based on Lagrangian atmospheric modeling, allowing the system to anticipate the origin, trajectory, and accumulation zones of airborne carbon masses, and to navigate toward areas with high CO₂ concentrations. The drone-mounted flat-panel reactor includes a high-transparency polycarbonate casing, energy-efficient LED light modules, and micro-level thermal regulation units, allowing rapid adaptation to changing environments and real-time optimization of photosynthetic efficiency. Beyond carbon fixation, the system also passively ventilates oxygen directly into the atmosphere, contributing to local air quality. Notably, the m-FBR autonomously absorbs atmospheric greenhouse gases such as CO₂ and water vapor—utilizing them as internal metabolic inputs. Thus, it sustains its nutrient demands without external supplementation and converts these gases into biomass and atmospheric oxygen via photosynthesis. With its capacity to absorb greenhouse gases in situ, utilize atmospheric resources as nutrient inputs, and release oxygen through photosynthetic processes, the proposed m-FBR system offers a versatile and novel biotechnological paradigm. It is applicable to carbon trading, urban air quality management, post-disaster atmospheric diagnostics, and sustainable oxygen production. Positioned at the intersection of nature-based solutions and artificial intelligence, this system functions as an autonomous biotechnological agent that not only monitors and analyzes the atmosphere but also actively contributes to its restoration. By overcoming the limitations of stationary photobioreactors, the m-FBR introduces a mobile, environmentally intelligent, and circular production model suited to contemporary climate challenges.
Keywords - Microalgae, Synechococcus elongatus, drone, photobioreactor, carbon capture, artificial intelligence, Lagrangian modeling
[1] Arasteh, H., Hosseinnezhad, V., Loia, V., Tommasetti, A., Troisi, O., Shafie-khah, M., & Siano, P. (2016, June). IoT-based smart cities: A survey. In 2016 IEEE 14th International Conference on Environment and Electrical Engineering (EEEIC) (pp. 1–6). IEEE. https://doi.org/10.1109/EEEIC.2016.7555867
[2] Augustin, A., Yi, J., Clausen, T., & Townsley, W. M. (2016). A study of LoRa: Long range & low power networks for the Internet of Things. Sensors, 16(9), 1466. https://doi.org/10.3390/s16091466
[3] Behrenfeld MJ, Randerson JT, McClain CR, Feldman GC, Los SO, Tucker CJ, Falkowski PG, Field CB, Frouin R, Esaias WE, Kolber DD, Pollack NH. (2001). Biospheric primary production during an ENSO transition. Science. 2001 Mar 30;291(5513):2594-7. doi: 10.1126/science.1055071. PMID: 11283369.
[4] Behrenfeld MJ, Boss ES. (2014). Resurrecting the ecological underpinnings of ocean plankton blooms. Ann Rev Mar Sci. 2014;6:167-94. doi: 10.1146/annurev-marine-052913-021325. Epub 2013 Sep 25. PMID: 24079309.
[5] Behrenfeld MJ, O'Malley RT, Siegel DA, McClain CR, Sarmiento JL, Feldman GC, Milligan AJ, Falkowski PG, Letelier RM, Boss ES. (2006). Climate-driven trends in contemporary ocean productivity. Nature. 2006 Dec 7;444(7120):752-5. doi: 10.1038/nature05317. PMID: 17151666.
[6] Badger, M. R., & Price, G. D. (2003). CO2 concentrating mechanisms in cyanobacteria: molecular components, their diversity and evolution, Journal of Experimental Botany, Volume 54, Issue 383, 1 February 2003, Pages 609–622, https://doi.org/10.1093/jxb/erg076
[7] Boyd, P. W., Claustre, H., Levy, M., Siegel, D. A., & Weber, T. (2019). Multi-faceted particle pumps drive carbon sequestration in the ocean. Nature, 568, 327–335. https://doi.org/10.1038/s41586-019-1098-2
[8] Boyd, P. W., Jickells, T., Law, C. S., Blain, S., Boyle, E. A., Buesseler, K. O., Coale, K. H., Cullen, H. J. W., Follows, M., Harvey, M., Lancelot, C., Levasseur, M., Owens, N. P. J., Pollard, R., Rivkin, R. B., Sarmiento, J., Schoemann, V., Smetacek, V., Takeda, S., Watson, A. J. (2007). Mesoscale iron enrichment experiments 1993-2005: Synthesis and future directions. Science, 315(5812), 612-617. https://doi.org/10.1126/science.1131669
[9] Berla BM, Saha R, Immethun CM, Maranas CD, Moon TS, Pakrasi HB. (2013). Synthetic biology of cyanobacteria: unique challenges and opportunities. Front Microbiol. 2013 Aug 27;4:246. doi: 10.3389/fmicb.2013.00246. PMID: 24009604; PMCID: PMC3755261.
[10] Cai, P.-J., Xiao, X., He, Y.-R., Li, W.-W., Zang, G.-L., Sheng, G.-P., Lam, M. H.-W., Yu, L., & Yu, H.-Q. (2013). Reactive oxygen species (ROS) generated by cyanobacteria act as an electron acceptor in the biocathode of a bio-electrochemical system. Biosensors and Bioelectronics, 39(1), 306–310. https://doi.org/10.1016/j.bios.2012.06.058
[11] Centenaro, M., Vangelista, L., Zanella, A., & Zorzi, M. (2016). Long-range communications in unlicensed bands: The rising stars in the IoT and smart city scenarios. IEEE Wireless Communications, 23(5), 60–67. https://doi.org/10.1109/MWC.2016.7721743
[12] Carvalho AP, Silva SO, Baptista JM, Malcata FX. (2011). Light requirements in microalgal photobioreactors: an overview of biophotonic aspects. Appl Microbiol Biotechnol. 2011 Mar;89(5):1275-88. doi: 10.1007/s00253-010-3047-8. Epub 2010 Dec 23. PMID: 21181149.
[13] Chen, C.Y., Yeh, K.L., Aisyah, R., Lee, D.J., Chang, J.S. (2011). Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: A critical review, Bioresource Technology, Volume 102, Issue 1, 2011,Pages 71-81, ISSN 0960-8524, https://doi.org/10.1016/j.biortech.2010.06.159.
[14] Chisti Y. (2007). Biodiesel from microalgae. Biotechnol Adv. 2007 May-Jun;25(3):294-306. doi: 10.1016/j.biotechadv.2007.02.001. Epub 2007 Feb 13. PMID: 17350212.
[15] Carvalho, A. P., Meireles, L. A., & Malcata, F. X. (2006). Microalgal reactors: a review of enclosed system designs and performances. Biotechnology Progress, 22(6), 1490–1506.
[16] De Micco, V., Amitrano, C., Mastroleo, F., Aronne, G., Battistelli, A., Carnero-Diaz, E., De Pascale, S., Detrell, G., Dussap, C.-G., Ganigué, R., Jakobsen, Ø. M., Poulet, L., Van Houdt, R., Verseux, C., Vlaeminck, S. E., Willaert, R., & Leys, N. (2023). Plant and microbial science and technology as cornerstones to bioregenerative life support systems in space. npj Microgravity, 9(69). https://doi.org/10.1038/s41526-023-00334-1
[17] Doney SC, Fabry VJ, Feely RA, Kleypas JA. (2009). Ocean acidification: the other CO2 problem. Ann Rev Mar Sci. 2009;1:169-92. doi: 10.1146/annurev.marine.010908.163834. PMID: 21141034.
[18] Falkowski PG. (1994). The role of phytoplankton photosynthesis in global biogeochemical cycles. Photosynth Res. 1994 Mar;39(3):235-58. doi: 10.1007/BF00014586. PMID: 24311124.
[19] Falkowski, P. G., Barber, R. T., & Smetacek, V. (1998). Biogeochemical controls and feedbacks on ocean primary production. Science, 281(5374), 200–206. https://doi.org/10.1126/science.281.5374.200
[20] IPCC, 2023: Summary for Policymakers. In: Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, H. Lee and J. Romero (eds.)]. IPCC, Geneva, Switzerland, pp. 1-34, doi: 10.59327/IPCC/AR6-9789291691647.001
[21] Field, C. B., Behrenfeld, M. J., Randerson, J. T., & Falkowski, P. (1998). Primary production of the biosphere: Integrating terrestrial and oceanic components. Science, 281(5374), 237–240. https://doi.org/10.1126/science.281.5374.237
[22] Flombaum P, Gallegos JL, Gordillo RA, Rincón J, Zabala LL, Jiao N, Karl DM, Li WK, Lomas MW, Veneziano D, Vera CS, Vrugt JA, Martiny AC. (2013). Present and future global distributions of the marine Cyanobacteria Prochlorococcus and Synechococcus. Proc Natl Acad Sci U S A. 2013 Jun 11;110(24):9824-9. doi: 10.1073/pnas.1307701110. Epub 2013 May 23. PMID: 23703908; PMCID: PMC3683724.
[23] Gruber Nicolas (2011).Warming up, turning sour, losing breath: ocean biogeochemistry under global change. Phil. Trans. R. Soc. A.3691980–1996
[24] Golden SS, Brusslan J, Haselkorn R. (1986). Expression of a family of psbA genes encoding a photosystem II polypeptide in the cyanobacterium Anacystis nidulans R2. EMBO J. (1986) Nov;5(11):2789-98. doi: 10.1002/j.1460-2075.1986.tb04569.x. PMID: 3098559; PMCID: PMC1167224.
[25] Güroy, B. (2025). BLUE CARD: Fair carbon model – The critical role of microalgae in the carbon market. In 1st International Agriculture, Animal Husbandry and Forestry Sciences Congress (pp. 229–283). Ankara. ISBN: 978-625-378-190-3
[26] Gitelson, J. I., Lisovsky, G. M., & MacElroy, R. D. (2003). Man-made closed ecological systems. CRC Press.
[27] Hu, G., Kubota, C., & You, F. (2025). A cyber-physical-biological system for energy optimization in controlled environment agriculture: A comprehensive review, key challenges, and future outlook. Energy, 286, 136153. https://doi.org/10.1016/j.energy.2025.136153
[28] Hendrickx L, De Wever H, Hermans V, Mastroleo F, Morin N, Wilmotte A, Janssen P, Mergeay M. (2005). Microbial ecology of the closed artificial ecosystem MELiSSA (Micro-Ecological Life Support System Alternative): reinventing and compartmentalizing the Earth's food and oxygen regeneration system for long-haul space exploration missions. Res Microbiol. 2006 Jan-Feb;157(1):77-86. doi: 10.1016/j.resmic.2005.06.014. Epub 2005 Dec 9. PMID: 16431089.
[29] Holton, J. R., & Hakim, G. J. (2012). An Introduction to Dynamic Meteorology (5th ed.). Academic Press.
[30] Ikeuchi M, Tabata S. (2001). Synechocystis sp. PCC 6803 - a useful tool in the study of the genetics of cyanobacteria. Photosynth Res. (2001);70(1):73-83. doi: 10.1023/A:1013887908680. PMID: 16228363.IPCC (2023). Sixth Assessment Report – Climate Change and Carbon Cycle Feedbacks.
[31] Kumar, A., Prybutok, V., & Sangana, V. K. R. (2025). Environmental Implications of Drone-Based Delivery Systems: A Structured Literature Review. Clean Technologies, 7(1), 24. https://doi.org/10.3390/cleantechnol7010024
[32] Kerfeld CA, Heinhorst S, Cannon GC. (2010). Bacterial microcompartments. Annu Rev Microbiol. 2010;64:391-408. doi: 10.1146/annurev.micro.112408.134211. PMID: 20825353.
[33] Kumar, K., Dasgupta, C. N., Nayak, B., Lindblad, P., & Das, D. (2021). Development of a drone-based CO₂ sensing system for environmental monitoring. Renewable and Sustainable Energy Reviews, 145, 111100. https://doi.org/10.1016/j.rser.2021.111100
[34] Khan, S., Shah, I. A., Ahmad, S., Khan, J. A., Anwar, M. S., & Aurangzeb, K. (2025). A comprehensive survey on multi-facet fog-computing resource management techniques, trends, applications and future directions. Expert Systems, e70019. https://doi.org/10.1111/exsy.70019
[35] Leite, G.B.,. Abdelaziz, A.E.M., C. Patrick. (2013). Hallenbeck, Algal biofuels: Challenges and opportunities,Bioresource Technology,Volume 145,2013,Pages 134-141,ISSN 0960-8524,https://doi.org/10.1016/j.biortech.2013.02.007.
[36] Logan, R. D., Torrey, M. A., Feijó-Lima, R., Colman, B. P., Valett, H. M., & Shaw, J. A. (2023). UAV-Based Hyperspectral Imaging for River Algae Pigment Estimation. Remote Sensing, 15(12), 3148. https://doi.org/10.3390/rs15123148
[37] Lin PC, Pakrasi HB. (2019). Engineering cyanobacteria for production of terpenoids. Planta. 2019 Jan;249(1):145-154. doi: 10.1007/s00425-018-3047-y. Epub 2018 Nov 21. PMID: 30465115.
[38] Lin, J. C., Gerbig, C., Wofsy, S. C., Andrews, A. E., Daube, B. C., Davis, K. J., & Grainger, C. A. (2003). A near-field tool for simulating the upstream influence of atmospheric observations: The Stochastic Time-Inverted Lagrangian Transport (STILT) model. Journal of Geophysical Research: Atmospheres, 108(D16), 4493. https://doi.org/10.1029/2002JD003161
[39] Le Quéré C, Rödenbeck C, Buitenhuis ET, Conway TJ, Langenfelds R, Gomez A, Labuschagne C, Ramonet M, Nakazawa T, Metzl N, Gillett N, Heimann M.(2007). Saturation of the southern ocean CO2 sink due to recent climate change. Science. 2007 Jun 22;316(5832):1735-8. doi: 10.1126/science.1136188. Epub 2007 May 17. PMID: 17510327.
[40] Lehahn, Y., Ingle, K. N., & d’Ovidio, F. (2010). Satellite observations of phytoplankton blooms triggered by oceanic fronts. Geophysical Research Letters, 37(17). https://doi.org/10.1029/2010GL044709
[41] Lionello P, D'Agostino R, Ferreira D, Nguyen H, Singh MS. The Hadley circulation in a changing climate. Ann N Y Acad Sci. 2024 Apr;1534(1):69-93. doi: 10.1111/nyas.15114. Epub 2024 Mar 26. PMID: 38532631.
[42] Marinov I, Gnanadesikan A, Toggweiler JR, Sarmiento JL. (2006). The Southern Ocean biogeochemical divide. Nature. 2006 Jun 22;441(7096):964-7. doi: 10.1038/nature04883. PMID: 16791191
[43] Moore, C. M., Mills, M. M., Arrigo, K. R., Berman-Frank, I., Bopp, L., Boyd, P. W., Galbraith, E. D., Geider, R. J., Guieu, C., Jaccard, S. L., Jickells, T. D., La Roche, J., Lenton, T. M., Mahowald, N. M., Marañón, E., Marinov, I., Moore, J. K., Nakatsuka, T., Oschlies, A., ... Ulloa, O. (2013). Processes and patterns of oceanic nutrient limitation. Nature Geoscience, 6(9), 701-710. https://doi.org/10.1038/ngeo1765
[44] Misra, P., & Enge, P. (2006). Global Positioning System: Signals, Measurements and Performance. Ganga-Jamuna Press.
[45] Nishiyama Y, Allakhverdiev SI, Murata N. (2006). A new paradigm for the action of reactive oxygen species in the photoinhibition of photosystem II. Biochim Biophys Acta. 2006 Jul;1757(7):742-9. doi: 10.1016/j.bbabio.2006.05.013. Epub 2006 May 23. PMID: 16784721.
[46] Plan Bleu. (2008). Climate change and energy in the Mediterranean. Sophia Antipolis, France: Regional Activity Center. Retrieved from https://planbleu.org/publications/climate-change-and-energy-in-the-mediterranean
[47] Price GD, Badger MR, Woodger FJ, Long BM. (2008). Advances in understanding the cyanobacterial CO2-concentrating-mechanism (CCM): functional components, Ci transporters, diversity, genetic regulation and prospects for engineering into plants. J Exp Bot. 2008;59(7):1441-61. doi: 10.1093/jxb/erm112. Epub 2007 Jun 19. PMID: 17578868.
[48] Posten, C. (2009). Design principles of photo-bioreactors for cultivation of microalgae. Engineering in Life Sciences, 9(3), 165–177. https://doi.org/10.1002/elsc.200900003
[49] Papyan, Narek, Kulhandjian, Michel, Kulhandjian, Hovannes, Aslanyan, Levon. (2024). AI-Based Drone Assisted Human Rescue in Disaster Environments: Challenges and Opportunities.( 34)doiorg/10.1134/S1054661824010152
[50] Pulz O, Gross W. (2004). Valuable products from biotechnology of microalgae. Appl Microbiol Biotechnol. 2004 Nov;65(6):635-48. doi: 10.1007/s00253-004-1647-x. Epub 2004 Aug 6. PMID: 15300417.
[51] Rippka, R., Deruelles, J., Waterbury, J. B., Herdman, M., & Stanier, R. Y. (1979). Generic assignments, strain histories and properties of pure cultures of cyanobacteria. Journal of General Microbiology, 111, 1–61
[52] Rae BD, Long BM, Badger MR, Price GD.(2003). Functions, compositions, and evolution of the two types of carboxysomes: polyhedral microcompartments that facilitate CO2 fixation in cyanobacteria and some proteobacteria. Microbiol Mol Biol Rev. 2013 Sep;77(3):357-79. doi: 10.1128/MMBR.00061-12. PMID: 24006469; PMCID: PMC3811607.
[53] Rhein, M., Rintoul, S.R., Aoki, S., Campos, E., Chambers, D., Feely, R.A., Gulev, S., Johnson, G.C., Josey, S.A., Kostianoy, A., Mauritzen, C., Roemmich, D., Talley, L.D. and Wang, F. (2013) Observations: Ocean. In: Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V. and Midgley, P.M., Eds., Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge and New York.
[54] Ruffing AM. (2011). Engineered cyanobacteria: teaching an old bug new tricks. Bioeng Bugs. 2011 May-Jun;2(3):136-49. doi: 10.4161/bbug.2.3.15285. Epub 2011 May 1. PMID: 21637004.
[55] Stohl, A., Forster, C., Frank, A., Seibert, P., and Wotawa, G. (2005). Technical note: The Lagrangian particle dispersion model FLEXPART version 6.2, Atmos. Chem. Phys., 5, 2461–2474, https://doi.org/10.5194/acp-5-2461-2005
[56] Siegel DA, Doney SC, Yoder JA. (2002). The North Atlantic spring phytoplankton bloom and Sverdrup's critical depth hypothesis. Science. 2002 Apr 26;296(5568):730-3. doi: 10.1126/science.1069174. PMID: 11976453.
[57] Singh, R. N., Sharma, S., & Banerjee, R. (2015). Biofixation of carbon dioxide using microalgae. In M. A. A. Aziz (Ed.), Carbon Dioxide Sequestration (pp. 153–172). Springer. https://doi.org/10.1007/978-3-319-12415-5_8
[58] Sierra, E., Acién, F. G., Fernández, J. M., García, J. L., González, C., & Molina, E. (2008). Characterization of a flat plate photobioreactor for the production of microalgae. Chemical Engineering Journal, 138(1–3), 136–147. https://doi.org/10.1016/j.cej.2007.06.004
[59] Salmon, R. (2003). Hamiltonian fluid mechanics. Annual Review of Fluid Mechanics, 20, 225–256. https://doi.org/10.1146/annurev.fl.20.010188.001301
[60] Shi, W., Cao, J., Zhang, Q., Li, Y., & Xu, L. (2016). Edge Computing: Vision and Challenges. IEEE Internet of Things Journal, 3, 637-646. https://doi.org/10.1109/JIOT.2016.2579198
[61] TÜİK (2023). Kişi Başına Düşen Sera Gazı Emisyonları Raporu. Türkiye İstatistik Kurumu. https://data.tuik.gov.tr
[62] Ugwu CU, Aoyagi H, Uchiyama H. (2008). Photobioreactors for mass cultivation of algae. Bioresour Technol. 2008 Jul;99(10):4021-8. doi: 10.1016/j.biortech.2007.01.046. Epub 2007 Mar 26. PMID: 17379512.
[63] Xu, F., Gao, Z., Jiang, X., Weitao, S., Ning, J., Song, D., & Ai, J. (2018). A UAV and S2A data-based estimation of the initial biomass of green algae in the South Yellow Sea. Marine Pollution Bulletin, 128, 408–414. https://doi.org/10.1016/j.marpolbul.2018.01.061
[64] Xu P, Li J, Qian J, Wang B, Liu J, Xu R, Chen P, Zhou W. (2023). Recent advances in CO2 fixation by microalgae and its potential contribution to carbon neutrality. Chemosphere. 2023 Apr;319:137987. doi: 10.1016/j.chemosphere.2023.137987. Epub 2023 Jan 28. PMID: 36720412.
[65] Wang, B., Li, Y., Wu, N., & Lan, C. (2008). CO₂ bio-mitigation using microalgae. Applied Microbiology and Biotechnology, 79, 707–718. https://doi.org/10.1007/s00253-008-1518-y
[66] Wang, Y., Liu, J., Zhang, W., & Chen, F. (2021). Stress responses and mechanisms of microalgae. Frontiers in Microbiology, 12, 753272. https://doi.org/10.3389/fmicb.2021.753272
[67] Ungerer, J., Lin, P.-C., Chen, H.-Y., & Pakrasi, H. B. (2018). Adjustments to photosystem stoichiometry and electron transfer proteins are key to the remarkably fast growth of the cyanobacterium Synechococcus elongatus UTEX 2973. mBio, 9(1), e02327-17. https://doi.org/10.1128/mBio.02327-17
[68] Yılmaz, M., Emanet Beba, H., Dinç, U., Ünal, Z. F., toros, H. & Öztürk, Z. (2020). Dilovası Hava Kalitesinin Ulusal Mevzuata Göre Değerlendirilmesi .Avrupa Bilim ve Teknoloji Dergisi, (19), 703-714.
[69] Yu J, Liberton M, Cliften PF, Head RD, Jacobs JM, Smith RD, Koppenaal DW, Brand JJ, Pakrasi HB. (2015). Synechococcus elongatus UTEX 2973, a fast growing cyanobacterial chassis for biosynthesis using light and CO₂. Sci Rep. 2015 Jan 30;5:8132. doi: 10.1038/srep08132. PMID: 25633131; PMCID: PMC5389031.
[70] Zhang Q, Zheng Y, Tong D, Shao M, Wang S, Zhang Y, Xu X, Wang J, He H, Liu W, Ding Y, Lei Y, Li J, Wang Z, Zhang X, Wang Y, Cheng J, Liu Y, Shi Q, Yan L, Geng G, Hong C, Li M, Liu F, Zheng B, Cao J, Ding A, Gao J, Fu Q, Huo J, Liu B, Liu Z, Yang F, He K, Hao J. (2019). Drivers of improved PM2.5 air quality in China from 2013 to 2017. Proc Natl Acad Sci U S A. 2019 Dec 3;116(49):24463-24469. doi: 10.1073/pnas.1907956116. Epub 2019 Nov 18. PMID: 31740599; PMCID: PMC6900509.
[71] Nicolas Gruber, Dorothee C. E. Bakker, Tim DeVries, Luke Gregor, Judith Hauck, Peter Landschützer, Galen A. McKinley & Jens Daniel Müller. (2023). Trends and variability in the ocean carbon sink. Nat Rev Earth Environ 4, 119–134 (2023). https://doi.org/10.1038/s43017-022-00381-x
|
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
