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Abstract – Multiple Birth Support Vector Machines (MB-SVM) were introduced as a powerful extension of SVM. Although the 
basic idea is like SVM, optimal non-parallel hyperplanes are used for each class category. One may find different 
implementations of this approach in the literature. One of these is the Least Squares MB-SVM. An appealing property of this 
implementation is that an analytical solution is obtained that is used for classification. On the other hand, this solution involves 
matrix computations of sizes depending on the number of attributes and the size of the data set. In this study, we propose to use 
the k-means clustering algorithm before applying the Least Squares MB-SVM algorithm to improve the computational 
performance of MB-SVM. The preliminary results with the Iris data set indicate that by using only a small number of examples 
obtained from the k-means clusters, comparable performance can be obtained with the LS-MB-SVM method.  
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I. INTRODUCTION 
Support vector machines (SVM) are one of the supervised 

learning algorithms used with success in various applications. 
They were introduced in the framework of statistical learning 
by Vapnik and Chervonenkis [1]. The basic idea in SVM 
classification is to obtain the optimal hyperplane for 
classification by finding the maximum margin between 
examples at the boundaries of the examples in each class (..). 

In recent years one may find various extensions and 
variations of the basic idea used in SVMs [2]. One of these 
variations is the Twin Support – SVM (Twin-SVM) 
introduced by Jayadeva et al. [3]. In contrast to standard 
SVMs, non-parallel hyperplanes are used in Twin-SVMs. 
Multiple Birth – SVM introduced by Yang et al. [4] may be 
considered as an extension of the basic idea in Twin-SVM to 
multiple classes.   

MB-SVMs have lower computational complexity with 
improved classification accuracy [4]. On the other hand, there 
are various implementations of the MB-SVM approach. One 
of these is the Least Squares - MB-SVM (LS-MB-SVM) 
introduced by [5]. One advantage of this approach is that the 
solution for the optimal hyperplane is expressed analytically. 
On the other hand, this solution involves basic matrix 
computations and inverses of matrices whose dimensions 
depend on the dimensions of the data set. This may result in 
some computational problems especially for moderately large 
data sets.  

The main goal of this study is to reduce the computational 
complexity of the LS-MB-SVM while keeping classification 
performance. As noted before, the solution in LS-MB-SVM is 
expressed by using large matrix products and inverses of 
matrices, which may result in some computational problems. 
Thus, it is expected that applying the k-means clustering 

algorithm before using LS-MB-SVM will considerably reduce 
the computational complexity of this algorithm. 

II. MATERIALS AND METHOD 
Assuming that there are t class categories in the 

classification problem, the set of class categories will be 
denoted by 𝒞𝑡 = {𝑘1, 𝑘2, … , 𝑘𝑡 }. Thus, the data set for a 
classification problem can be expressed as 

 𝒟 = {(𝒙𝑗 , 𝑦𝑗): 𝒙𝑗 ∈ ℝ𝑛 , 𝑦𝑗 ∈ 𝒞𝑡 ;  𝑗 = 1,2, … , 𝑚}, (1) 
where 𝑚 denotes the number of examples. Since in the MB-
SVM approach there is an optimization problem for each class 
category it is more convenient to express this data set with 
respect to each class separately. Therefore, for 𝑖 = 1, 2, … , 𝑡 
the examples corresponding to the class category 𝑘𝑖 can be 
described as 
 𝒟𝑖 = {(𝒙𝑗

(𝑖)
, 𝑘𝑖): 𝒙𝑗

(𝑖)
∈ ℝ𝑛 ve  𝑗 = 1,2, … , 𝑚𝑖}, (2) 

where 𝑚𝑖 denotes the number of examples in class 𝑘𝑖. With 
this notation it follows that 
 𝒟 = 𝒟1 ∪ 𝒟2 ∪ ⋯ ∪ 𝒟𝑡 , (3) 
where 𝑚 = 𝑚1 + 𝑚2 + ⋯ + 𝑚𝑡. 

Although there are different implementations of the MB-
SVM approach we used the approach introduced in [5]. In this 
approach the solution is obtained by using the least squares 
method yielding an analytical solution of the classification 
problem. 

A. Least Squares Multiple Birth Support Vector Machines 
MB-SVMs were introduced by Yang et al. [4], which may 

be considered as a generalization of Twin-SVM introduced by 
Jayadeva et al. [3]. An important property of MB-SVM is that 
one optimization problem is expressed for each class to find 
the corresponding optimum hyperplane. On the other hand, in 
contrast to standard SVMs, examples are classified with these 
non-parallel hyperplanes in MB-SVMs.  

https://doi.org/10.36287/setsci.6.1.010
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Although there are different implementations of the MB-
SVM approach we used the approach in [5]. In this approach 
the optimization problem for classifying examples in class 𝑘𝑖 
is expressed as 

 
min

𝒘𝑖,𝑏𝑖,𝝃𝑖

1

2
‖𝐵𝑖𝒘𝑖 + 𝒆𝑖𝑏𝑖‖2

2 +
𝑐𝑖

2
𝝃𝑖

𝑇𝝃𝑖 +
𝑣𝑖

2
(‖𝒘𝑖‖

𝟐 + 𝑏𝑖
2)

𝑠. 𝑡.  (𝐴𝑖𝒘𝑖 + 𝒆𝑖
′𝑏𝑖) + 𝝃𝑖 = 𝒆𝑖

′,  𝝃𝑖 ≥ 0
 (4) 

Here, 𝐴𝑖 represents the matrix of the examples in class 𝑘𝑖 
without the class label. Similarly, matrix 𝐵𝑖 represents all 
examples (without any class label) in the data set except 
examples belonging to class 𝑘𝑖.  

Using the least squares method, the solution for the optimal 
hyperplane parameters is obtained as 

 𝒖𝑖 = [
𝒘𝑖

𝑏𝑖
] = 𝑐𝑖[𝐻𝑖

𝑇𝐻𝑖 + 𝑣𝑖𝐼𝑖 + 𝑐𝑖𝐺𝑖
𝑇𝐺𝑖]

−1𝐺𝑖
𝑇𝒆𝑖

′, (5) 
where 𝐻𝑖 = [𝐵𝑖 𝒆𝑖] and 𝐺𝑖 = [𝐴𝑖 𝒆𝑖

′]. A new example 𝒙0 is 
classified by using  

 𝑗 = arg max
𝑖=1,2,…𝑡

|𝒘𝑖
𝑇𝒙0+𝑏𝑖|

‖𝒘𝑖‖
, (6) 

and assigning it to class 𝑘𝑗. 
It should be noted that in the setting above it is assumed that 

the examples are almost linearly separable. If not, appropriate 
kernels can be used to transform the data set into a higher 
dimensional space to improve classification performance. In 
this case, the classification of a new example 𝒙0 is determined 
by  

 𝑗 = arg max
𝑖=1,2,…𝑡

|𝐾(𝒙0
𝑇,𝐶𝑇)�̃�𝑖+𝑏𝑖|

√�̃�𝑖
𝑇𝐾(𝐶𝑇,𝐶𝑇)�̃�𝑖

, (7) 

where 𝐾(. , . ) represents the kernel function to be used. For 
more details about the optimization problem and its solution 
the reader is referred to [5].  

B. Least Squares Multiple Birth Support Vector Machines 
with k-Means  

In Yang et al. [4] it is noted that the construction of different 
optimization problems for each class results in lower 
computational complexity and that it is expected to be faster 
than existing multi-class SVMs. On the other hand, as can be 
seen from equations (5) - (7) in LS-MB-SVM the solution 
involves computation of matrix multiplications depending on 
the size of the data set. For moderately large data sets and the 
increased number of parameters to be selected for high 
classification performance in LS-MB-SVM, this can 
negatively affect the training time and performance of the 
algorithm. Therefore, it is expected that using the k-means 
clustering algorithm before applying LS-MB-SVM, as 
introduced by Wang et al. [6] for SVMs, will reduce 
computational complexity and reduce training time.  

The basic idea in MB-SVM is to find the optimal hyperplane 
in a particular class that is farthest to the examples in the 
remaining classes. It is expected that only little information is 
lost, when using centers of clusters after k-means clustering, to 
construct the optimal hyperplane. This approach will be 
denoted by k-LS-MB-SVM. The basic steps of the proposed 
algorithm are as follows: 

1. Determine the number of clusters (k), the 
parameters (𝑐1, … , 𝑐𝑡 , 𝑣1, … , 𝑣𝑡) and appropriate 
kernel function 𝐾(. , . ) for LS-MB-SVM. 

2. Apply k-means clustering to the training set. 
3. Construct the reduced training set consisting of 

cluster centers and its corresponding class labels. 

4. Apply LS-MB-SVM to the reduced training set to 
obtain the classifier. 

Figure 1 shows how the training data set is reduced by k-
means from 14 examples to 5 examples (denoted by the larger 
red points) for a small data set.  The line represents the optimal 
hyperplane obtained by the reduced data set for examples in 
the class at the top left corner. The size of reduction depends 
on the number of clusters chosen. In this example, the training 
data set is reduced with a ratio of 14/5=2.8.  

Different strategies may be applied to use the information 
about classes in each cluster. In this study, we have used a 
simple strategy: assign the majority class label as the class 
label for each cluster center.  

 
Fig. 1 Example for clustering with k-means  

 

III. RESULTS 
The proposed approach was applied to the IRIS data set [7] 

to demonstrate how it reduces the training data set while 
preserving comparable classification performance. The data 
set is split into training and test sets with %30 as the test data 
set. This is repeated 5 times to take into consideration the 
variations of the splitting. Since for each run of the k-means 
algorithm different clusters may be obtained k-means 
clustering is applied to each of these training data sets 10 times 
for each value of k.  

The implementation of the proposed algorithm was done by 
using the R Software [8]. For SVM calculations the e1071 
package [9] was used whereas for the LS-MB-SVM 
calculations we developed our own implementation in R with 
the linear and radial basis kernels.  

Figure 2 shows how the test accuracies change with respect 
to the number of clusters for k=3,5,7,11,13 (a=3, b=5, … 
f=13). The results clearly indicate that for the radial basis 
kernel (k2) better classification results are obtained than for the 
linear kernel (k1).  
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Fig. 2 Accuracies for test set with k values of 3,5,7,9,11,13 

Figure 3 shows the average test accuracies for 10 trials with 
each k value for one test data set. These calculations are 
repeated for each different partition of train and test sets. The 
resulting average accuracies for each partition are compared 
with SVM and MB-SVM accuracies in Figure 4.  

 
Fig. 3 Average test accuracies for k values of 3,5,7,9,11,13 

Figure 4 shows how the test accuracies vary according to 
three different implementations of the SVM approach: SVM, 
MB-SVM, k-LS-MB-SVM. The accuracies for the k-LS-MB-
SVM method are obtained by taking the average of 10 repeated 
calculations with k=11.  

 

 
Fig. 4 Average test accuracies for three different SVM implementations 

From Figure 4 it is clear that the best performance for this 
data set is obtained with the MB-SVM method. The accuracies 

for the SVM method are slightly smaller than the accuracies 
for the MB-SVM method. We note that the training data size 
for both methods is 105 whereas for the k-LS-MB-SVM 
method it consists only of 11 examples. Therefore, the k-LS-
MB-SVM method yields comparable accuracies with only a 
small number of examples obtained from the clusters.  

IV. DISCUSSION 
Although k-means clustering has been applied with SVM in 

several studies, (see for example [6]) to the best of our 
knowledge there is no study in the literature that uses the same 
approach with MB-SVMs.  

The preliminary findings of this study indicate that using k-
means with the LS-MB-SVM method indeed helps to improve 
the computational performance of this method. In this study, 
we selected a fixed value for each train/test splitting. The 
results indicated that overall, the best choice (with respect to 
test accuracies) for the considered k-values was 11. We note 
here that in general increasing the k value also increases 
classification accuracies up to some threshold value. 
Therefore, using larger k values even higher classification 
accuracies for the k-LS-MB-SVM approach can be expected 
than the results given in Figure 4.  

In this study, we only used a limited number of k-values 
because of time constraints.  An alternative could be to choose 
a wider range of k values and selecting different k values for 
different training data sets. The results demonstrate that by 
using only a small number of examples obtained from the k-
means clustering, comparable performance can be obtained. In 
addition, the time needed for classification is also considerable 
reduced with the introduced approach.  

Another advantage of the proposed approach is that fine-
tuning of the additional parameters resulting from the LS-MB-
SVM approach can be addressed more effectively. We only 
used a fixed set of values for these parameters (𝑐1 = 𝑐2 =
 𝑐𝑡 = 0.5, 𝑣1 = 𝑣2 = 𝑣3 = 1.0). Fine-tuning of these and 
kernel function parameters may further improve classification 
accuracies.  
 

V. CONCLUSION 
The main objective of this study was to investigate the use 

of k-means clustering algorithm before applying LS-MB-
SVM, as introduced by Wang et al. [6] for SVMs. The 
preliminary findings indicate that with appropriately chosen k 
values and cluster representatives as training examples the 
computational complexity of LS-MB-SVM can be reduced 
with comparable classification performance. Although the 
results of this study need to be verified with other data sets our 
preliminary findings show that the proposed approach is 
promising in improving the computational performance of the 
LS-MB-SVM method.  
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